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-I- INTRODUCTION

Two main approaches in structural optimization:

1) Geometric optimization by boundary variations

☞ Hadamard method of shape sensitivity: Murat-Simon, Pironneau, Zolésio...

☞ Ill-posed problem: many local minima, no convergence under mesh refinement.

☞ * Very costly because of remeshing.

☞ * Very general: any model or objective function.

2) Topology optimization (the homogenization method)

☞ Developed by Murat-Tartar, Lurie-Cherkaev, Kohn-Strang, Bendsoe-Kikuchi...

☞ Well-posed problem ; topology changes.

☞ * Limited to linear models and simple objective functions.

☞ * Very cheap because it captures shapes on a fixed mesh.
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�GOAL OF THIS WORK

Combine the advantages of the two approaches:

☞ Fixed mesh: low computational cost.

☞ General method: based on shape differentiation.

Main tool: the level set method of Osher and Sethian.

☞ Some references: Sethian and Wiegmann (JCP 2000), Osher and Santosa

(JCP 2001), Allaire, Jouve and Toader (CRAS 2002), Wang, Wang and Guo

(CMAME 2003).

☞ Similar (but different) from the phase field approach of Bourdin and

Chambolle (COCV 2003).

☞ Some drawbacks remain: reduction of topology rather than variation (mainly

in 2-d), many local minima.
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-II- SETTING OF THE PROBLEM

Structural optimization in linearized elasticity (to begin with).

Shape Ω with boundary

∂Ω = Γ ∪ ΓN ∪ ΓD,

with Dirichlet condition on ΓD, Neumann condition on Γ ∪ ΓN . Only Γ is

optimized.


























−div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(

Ae(u)
)

n = g on ΓN
(

Ae(u)
)

n = 0 on Γ

with e(u) = 1
2 (∇u+ ∇tu), and A an homogeneous isotropic elasticity tensor.
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�OBJECTIVE FUNCTIONS

Two examples:

Compliance or work done by the load

J(Ω) =

∫

ΓN

g · u ds =

∫

Ω

Ae(u) · e(u) dx,

A least square criteria (useful for designing mechanisms)

J(Ω) =

(
∫

Ω

k(x)|u− u0|
αdx

)1/α

,

with a target displacement u0, α ≥ 2 and k a given weighting factor.
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�EXISTENCE THEORY

The “minimal” set of admissible shapes

Uad =
{

Ω ⊂ D, vol(Ω) = V0, ΓD ∪ ΓN ⊂ ∂Ω
}

with D a bounded open set IRN . Usually, the minimization problem has no

solution in Uad.

There exists an optimal shape if further conditions are required:

1. a uniform cone condition (D. Chenais).

2. a perimeter constraint (L. Ambrosio, G. Buttazzo).

3. a bound on the number of connected components of D \ Ω in two space

dimensions (A. Chambolle).
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�PROPOSED NUMERICAL METHOD

First step: we compute shape derivatives of the objective functions in a

continuous framework.

Second step: we model a shape by a level-set function ; the shape is varied by

advecting the level-set function following the flow of the shape gradient (the

transport equation is of Hamilton-Jacobi type).
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-III- SHAPE DIFFERENTIATION

Framework of Murat-Simon:

Let Ω0 be a reference domain. Consider its variations

Ω =
(

Id+ θ
)

Ω0 with θ ∈W 1,∞(IRN ; IRN ).

Lemma. For any θ ∈W 1,∞(IRN ; IRN ) such that ‖θ‖W 1,∞(IRN ;IRN ) < 1, (Id+ θ) is

a diffeomorphism in IRN .

Definition: the shape derivative of J(Ω) at Ω0 is the Fréchet differential of

θ → J
(

(Id+ θ)Ω0

)

at 0.
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x

Ω (Ι+θ)Ω

x+  (x)θ

The set Ω = (Id+ θ)(Ω0) is defined by

Ω = {x+ θ(x) | x ∈ Ω0} .

The vector field θ(x) is the displacement of Ω0.
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The derivative J ′(Ω0)(θ) depends only on θ · n on the boundary ∂Ω0.

(x)θ

(x)θ

x

n(x)

x+

Ω

+θ)Ω(I

0

0

Lemma. Let Ω0 be a smooth bounded open set and J(Ω) a differentiable

function at Ω0. Its derivative satisfies

J ′(Ω0)(θ1) = J ′(Ω0)(θ2)

if θ1, θ2 ∈W 1,∞(IRN ; IRN ) are such that θ2 − θ1 ∈ C1(IRN ; IRN ) and

θ1 · n = θ2 · n on ∂Ω0.
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Example 1 of shape derivative

Let Ω0 be a smooth bounded open set and f(x) ∈W 1,1(IRN ). Define

J(Ω) =

∫

Ω

f(x) dx.

Then J is differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

Ω0

div
(

θ(x) f(x)
)

dx =

∫

∂Ω0

θ(x) · n(x) f(x) ds

for any θ ∈W 1,∞(IRN ; IRN ).
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Example 2 of shape derivative

Let Ω0 be a smooth bounded open set and f(x) ∈W 2,1(IRN ). Define

J(Ω) =

∫

∂Ω

f(x) ds.

Then J is differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

∂Ω0

(

∇f · θ + f
(

div θ −∇θn · n
))

ds

for any θ ∈W 1,∞(IRN ; IRN ).

An integration by parts on the manyfold ∂Ω0 yields

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n

(

∂f

∂n
+Hf

)

ds,

where H is the mean curvature of ∂Ω0 defined by H = div n.
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�SHAPE DERIVATIVE OF THE COMPLIANCE

J(Ω) =

∫

ΓN

g · uΩ ds =

∫

Ω

Ae(uΩ) · e(uΩ) dx,

J ′(Ω0)(θ) = −

∫

Γ

Ae(u) · e(u) θ · n ds,

where u is the state variable in Ω0.

Remark: self-adjoint problem (no adjoint state is required).
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SHAPE DERIVATIVE OF THE LEAST-SQUARE CRITERIA

J(Ω) =

(
∫

Ω

k(x)|uΩ − u0|
αdx

)1/α

,

J ′(Ω0)(θ) =

∫

Γ

(

−Ae(p) · e(u) +
C0

α
k|u− u0|

α

)

θ · n ds,

with the state u and the adjoint state p defined by















−div (Ae(p)) = C0k(x)|u− u0|
α−2(u− u0) in Ω0

p = 0 on ΓD
(

Ae(p)
)

n = 0 on ΓN ∪ Γ,

and C0 =
(

∫

Ω0
k(x)|u(x) − u0(x)|

αdx
)1/α−1

.
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�SHAPE DERIVATIVES OF CONSTRAINTS

Volume constraint:

V (Ω) =

∫

Ω

dx,

V ′(Ω0)(θ) =

∫

Γ

θ · n ds

Perimeter constraint:

P (Ω) =

∫

∂Ω

ds,

P ′(Ω0)(θ) =

∫

Γ

H θ · n ds
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Idea of the proof.

The proof is classical.

Rigorous but lengthy proof:

➫ Change of variables: x ∈ Ω0 ⇒ y = x+ θ(x) ∈ Ω. Rewrite all integrals in the

fixed reference domain Ω0.

➫ Write a variational formulation of the p.d.e. in Ω0.

➫ Differentiate with respect to θ.
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Formal but simpler proof (due to Céa) for J(Ω) =
∫

Ω
j(x, uΩ) dx:

➫ Write a Lagrangian for (v, q) ∈
(

H1(IRd; IRd)
)2

L(Ω, v, q) =

∫

Ω

j(x, v) dx+

∫

Ω

Ae(v) · e(q) dx−

∫

ΓN

q · g ds

−

∫

ΓD

(

q ·Ae(v)n+ v ·Ae(q)n
)

ds.

➫ Stationarity of L gives the state and adjoint equations.

➫ Remark that J(Ω) = L(Ω, uΩ, pΩ), and thus

J ′(Ω)(θ) =
∂L

∂Ω
(Ω, uΩ, pΩ)
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-IV- FRONT PROPAGATION BY LEVEL SET

Shape capturing method on a fixed mesh of a “large” box D.

A shape Ω is parametrized by a level set function















ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D

ψ(x) < 0 ⇔ x ∈ Ω

ψ(x) > 0 ⇔ x ∈ (D \ Ω)

The normal n to Ω is given by ∇ψ/|∇ψ| and the curvature H is the divergence of

n. These formulas make sense everywhere in D on not only on the boundary ∂Ω.



Shape optimization 19 G. Allaire

�

�

�

�
Hamilton Jacobi equation

Assume that the shape Ω(t) evolves in time t with a normal velocity V (t, x).

Then

ψ
(

t, x(t)
)

= 0 for any x(t) ∈ ∂Ω(t).

Deriving in t yields

∂ψ

∂t
+ ẋ(t) · ∇xψ =

∂ψ

∂t
+ V n · ∇xψ = 0.

Since n = ∇xψ/|∇xψ| we obtain

∂ψ

∂t
+ V |∇xψ| = 0.

This Hamilton Jacobi equation is posed in the whole box D, and not only on the

boundary ∂Ω, if the velocity V is known everywhere.
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�Idea of the method

Shape derivative

J ′(Ω0)(θ) =

∫

Γ0

j(u, p, n) θ · n ds.

Gradient algorithm for the shape:

Ωk+1 =
(

Id− j(uk, pk, nk)nk

)

Ωk

since the normal nk is “automatically” defined everywhere in D. In other words,

the normal advection velocity of the shape is −j. Introducing a “pseudo-time” (a

descent parameter), we solve the Hamilton-Jacobi equation

∂ψ

∂t
− j|∇xψ| = 0 in D
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Choice of the advection velocity

Simplest choice:

J ′(Ω0)(θ) =

∫

Γ

j θ · n ds ⇒ θ = −j n.

However, j may be not smooth enough (typically j ∈ L1(Ω0) if there are

“corners”).

Classical trick: one can smooth the velocity. For example:














−∆θ = 0 in Ω0

θ = 0 on ΓD ∪ ΓN
∂θ
∂n = −j n on Γ

It increases of one order the regularity of θ and
∫

Ω0

|∇θ|2dx = −

∫

Γ

j θ · n ds

which guarantees the decrease of J .
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-V- NUMERICAL ALGORITHM

1. Initialization of the level set function ψ0 (including holes).

2. Iteration until convergence for k ≥ 1:

(a) Computation of uk and pk by solving linearized elasticity problem with

the shape ψk. Evaluation of the shape gradient = normal velocity Vk

(b) Transport of the shape by Vk (Hamilton Jacobi equation) to obtain a new

shape ψk+1.

(c) (Occasionally, re-initialization of the level set function ψk+1 as the signed

distance to the interface).
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Algorithmic issues

✗ Quadrangular mesh.

✗ Finite difference scheme, upwind of order 1, for the Hamilton Jacobi equation

(ψ is discretized at the mesh nodes).

✗ Q1 finite elements for the elasticity problems in the box D


























−div (A∗ e(u)) = 0 in D

u = 0 on ΓD
(

A∗e(u)
)

n = g on ΓN
(

A∗e(u)
)

n = 0 on ∂D \ (ΓN ∪ ΓD).

✗ Elasticity tensor A∗ defined as a “mixture” of A and a weak material

mimicking holes

A∗ = θA with 10−3 ≤ θ ≤ 1

and θ = volume of the shape ψ < 0 in each cell (piecewise constant

proportion).
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Upwind scheme

∂ψ

∂t
− j|∇xψ| = 0 in D

solved by an explicit 1st order upwind scheme

ψn+1
i − ψni

∆t
− max(jni , 0) g

+(D+
x ψ

n
i , D

−

x ψ
n
i ) − min(jni , 0) g

−(D+
x ψ

n
i , D

−

x ψ
n
i ) = 0

with D+
x ψ

n
i =

ψn
i+1−ψ

n
i

∆x , D−

x ψ
n
i =

ψn
i −ψn

i−1

∆x , and

g−(d+, d−) =
√

min(d+, 0)2 + max(d−, 0)2,

g+(d+, d−) =
√

max(d+, 0)2 + min(d−, 0)2.

☞ 2nd order extension.

☞ Easy computation of the curvature (for perimeter penalization).



Shape optimization 25 G. Allaire

�

�

�

�Re-initialization

In order to regularize the level set function (which may become too flat or too

steep), we reinitialize it periodically by solving






∂ψ

∂t
+ sign(ψ0)

(

|∇xψ| − 1
)

= 0 for x ∈ D, t > 0

ψ(t = 0, x) = ψ0(x)

which admits as a stationary solution the signed distance to the initial interface

{ψ0(x) = 0}.

☞ Classical idea in fluid mechanics.

☞ A few iterations are enough.

☞ Improve the convergence of the optimization process (for fine meshes).



Shape optimization 26 G. Allaire

�

�

�

�
Choice of the descent step

Two different strategies:

At each elasticity analysis, we perform a single time step of transport:

☞ The descent step is controlled by the CFL of the transport equation.

☞ Smooth descent.

☞ Lengthy computations (sub-optimal descent step).

At each elasticity analysis, we perform many time steps of transport:

☞ The descent step is controlled by the decrease of the objective function.

☞ Fast descent but requires a good heuristic for monitoring the number of time

steps.
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�NUMERICAL EXAMPLES

See the web page

http://www.cmap.polytechnique.fr/˜optopo/level en.html
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�Short cantilever
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�
Medium cantilever: iterations 0, 10 and 50
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Convergence history

Iterations

O
bj

ec
ti

ve
 f

un
ct

io
n

0 10 20 30 40 50 60 70 80 90 100

200

300

150

250

1st order          
2nd order          
no reinitialization
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�Influence of re-initialization
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Influence of perimeter constraint
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Design dependent loads - 1

Force g applied to the free boundary















−div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(

Ae(u)
)

n = g on ΓN ∪ Γ

Compliance minimization

J(Ω) =

∫

Γ∪ΓN

g · u ds =

∫

Ω

Ae(u) · e(u) dx,

J ′(Ω0)(θ) =

∫

Γ0

(

2

[

∂(g · u)

∂n
+Hg · u

]

−Ae(u) · e(u)

)

θ · n ds,
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�
Optimal mast under a uniform wind
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Design dependent loads - 2

Pressure p0 applied to the free boundary















−div (Ae(u)) = 0 in Ω

u = 0 on ΓD
(

Ae(u)
)

n = p0 n on ΓN ∪ Γ

Compliance minimization

J(Ω) =

∫

Γ∪ΓN

p0 n · u ds =

∫

Ω

Ae(u) · e(u) dx,

J ′(Ω0)(θ) =

∫

Γ0

θ · n
(

2div (p0u) −Ae(u) · e(u)
)

ds
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�
Sea star under a uniform pressure load
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Non-linear elasticity















−div (T (F )) = f in Ω

u = 0 on ΓD

T (F )n = g on ΓN ,

with the deformation gradient F = (I + ∇u) and the stress tensor

T (F ) = F
(

λTr(E)I + 2µE
)

with E =
1

2

(

FTF − I)
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�Conclusion

☞ Efficient method.

☞ With a good initialization, comparable to the homogenization method.

☞ No nucleation mechanism.

☞ Can be pre-processed by the homogenization method.

☞ Can handle non-linear models, design dependent loads and any smooth

objective function.


