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-I- INTRODUCTION '

Two main approaches in structural optimization:

Geometric optimization by boundary variations

Hadamard method of shape sensitivity: Murat-Simon, Pironneau, Zolésio...
Ill-posed problem: many local minima, no convergence under mesh refinement.
* Very costly because of remeshing.

* Very general: any model or objective function.

Topology optimization (the homogenization method)

Developed by Murat-Tartar, Lurie-Cherkaev, Kohn-Strang, Bendsoe-Kikuchi...
Well-posed problem ; topology changes.
* Limited to linear models and simple objective functions.

* Very cheap because it captures shapes on a fixed mesh.
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(GOAL OF THIS WORK |

Combine the advantages of the two approaches:
[0 Fixed mesh: low computational cost.
[ General method: based on shape differentiation.
Main tool: the level set method of Osher and Sethian.

[1 Some references: Sethian and Wiegmann (JCP 2000), Osher and Santosa
(JCP 2001), Allaire, Jouve and Toader (CRAS 2002), Wang, Wang and Guo
(CMAME 2003).

[0 Similar (but different) from the phase field approach of Bourdin and
Chambolle (COCV 2003).

[1 Some drawbacks remain: reduction of topology rather than variation (mainly

in 2-d), many local minima.
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-II- SETTING OF THE PROBLEM'

Structural optimization in linearized elasticity (to begin with).

Shape () with boundary
0N=TuUl'yulp,

with Dirichlet condition on I'p, Neumann condition on I' UT'x. Only IT' is

optimized.
)

—div (Ae(u)) =0 in Q
u=~0 on I'p
(Ae(u))n =g on 'y
\ (Ae(u))n =0 on I’

% (Vu + V'u), and A an homogeneous isotropic elasticity tensor.
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OBJECTIVE FUNCTIONS

Two examples:

Compliance or work done by the load

J(Q)—/FNg-uds:/QAe(u)-e(u)d:U,

A least square criteria (useful for designing mechanisms)

(/Q () [ — uoyada;) o

with a target displacement ug, o > 2 and k a given weighting factor.
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EXISTENCE THEORY

The “minimal” set of admissible shapes

Upg = {Q c D, vol(Q)=Vy, TpUDly C aﬂ}

with D a bounded open set R". Usually, the minimization problem has no

solution in U, 4.

There exists an optimal shape if further conditions are required:
1. a uniform cone condition (D. Chenais).
2. a perimeter constraint (L. Ambrosio, G. Buttazzo).

3. a bound on the number of connected components of D \ €2 in two space
dimensions (A. Chambolle).
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PROPOSED NUMERICAL METHOD

First step: we compute shape derivatives of the objective functions in a

continuous framework.

Second step: we model a shape by a level-set function ; the shape is varied by

advecting the level-set function following the flow of the shape gradient (the

transport equation is of Hamilton-Jacobi type).
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‘-III- SHAPE DIFFERENTIATION'

Framework of Murat-Simon:

Let 29 be a reference domain. Consider its variations

Q= (Id+6)Q with e WhHRY;RY).

Lemma. For any § € W5 (RY;R") such that 10|l wr.oe mymryy < 1, (Id+0) is

a diffeomorphism in R .

Definition: the shape derivative of J({2) at )y is the Fréchet differential of
0 — J((Id+6)Q) at 0.
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The set Q = (Id+ 0)(£) is defined by

Q={x+0(x)|xeQ}.

The vector field 0(x) is the displacement of €.
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The derivative J'(€)(6) depends only on 6 - n on the boundary 0€).
n(x)

Lemma. Let €2y be a smooth bounded open set and J(€2) a differentiable
function at €2y. Its derivative satisfies

J'(Q0)(01) = J'(0)(62)

if 01,60, € WEH2(RY;R") are such that 65 — 6, € C'(R";R") and

01 -n=605-n on 0.
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‘ Example 1 of shape derivative I

Let € be a smooth bounded open set and f(z) € WH1(RY). Define

0 = [ f@)do

Then J is differentiable at €2y and

T (Q0)(0) = / div (0(z) f(z)) dz

Qo

for any € WhH°(RY; RY).
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‘ Example 2 of shape derivative I

Let © be a smooth bounded open set and f(z) € W21(R"). Define

J(Q) = " f(x)ds.

Then J is differentiable at {2y and

T (Q0)(6) = /{m (Vf-0+ f(divo—Von-n))ds

for any € WhH°(RY;RY).
An integration by parts on the manyfold 0§}y yields

T (Q0)(0) = /m 0-n (% + Hf) ds,

where H is the mean curvature of 9€)y defined by H = div n.
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SHAPE DERIVATIVE OF THE COMPLIANCE

7(00)6) = [

r

where u is the state variable in ().

Remark: self-adjoint problem (no adjoint state is required).
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(SHAPE DERIVATIVE OF THE LEAST-SQUARE CRITERIA |

J(Q) = ( /Q k(z)|ug — u0|0‘daz> Ua,

(—Ae( ) -e(u) + %k!u — uglo‘) 6 -nds,

J'(£20)(0) :/

r
with the state u and the adjoint state p defined by

y

—div (Ae(p)) = Cok(x)|u — up|* ?(u —ug) in Qg
p = 0 on FD
| (Ae(p))n =0 on 'y UT,

and G = ( [, b(a)u(z) - uo(x)|o‘dx>1/ )
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SHAPE DERIVATIVES OF CONSTRAINTS

Volume constraint:

Perimeter constraint:
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[Idea of the proof.j

The proof is classical.

Rigorous but lengthy proof:

[0 Change of variables: x € Qg = y = = + 0(x) € ). Rewrite all integrals in the

fixed reference domain €.

[1 Write a variational formulation of the p.d.e. in €.

[1 Differentiate with respect to 6.
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Formal but simpler proof (due to Céa) for J(Q) = [, j(z,uq) dz:

2
[1 Write a Lagrangian for (v, q) € (Hl(Rd; ]Rd))

L(Qwv,q) = /Qj(x,v)dx—l—/QAe( )-e(q)da:—/ q-gds

I'n

_/F <q - Ae(v)n + v - Ae(q)n) ds.

[1 Stationarity of £ gives the state and adjoint equations.

[0 Remark that J(Q2) = L(2, uq, pq), and thus

oL

T(9)(0) = 5= (

Qauﬁapﬁ)
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-IV- FRONT PROPAGATION BY LEVEL SET'

Shape capturing method on a fixed mesh of a “large” box D.

A shape () is parametrized by a level set function

y

Y(r)=0 <xeddnD
Y(r) <0 < xel
| Y(r) >0 & xze(D\Q)

The normal n to € is given by V¢ /|V| and the curvature H is the divergence of
n. These formulas make sense everywhere in D on not only on the boundary 0.
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(Hamilton Jacobi equation]

Assume that the shape () evolves in time ¢ with a normal velocity V (¢, x).
Then

?,b(t,a:(t)) =0 for any x(t) € 09)t).

Deriving in t yields

oy oY _

Since n = V19 /|V 1| we obtain

O B

This Hamilton Jacobi equation is posed in the whole box DD, and not only on the

boundary 0f2, if the velocity V is known everywhere.
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Idea of the method

Shape derivative
7(@0)(0) = [ i(upn)6-nds
o
Gradient algorithm for the shape:

Qk—i—l — (Id - j(ukapka nk)nk)Qk

since the normal nj is “automatically” defined everywhere in D. In other words,
the normal advection velocity of the shape is —j. Introducing a “pseudo-time” (a

descent parameter), we solve the Hamilton-Jacobi equation

%—‘f —JIVe| =0 in D
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[Choice of the advection Velocity]

Simplest choice:

J’(QO)(Q):/Fjé’-nds = 60=—jn.

However, j may be not smooth enough (typically 7 € L'(Qg) if there are

“corners”).

Classical trick: one can smooth the velocity. For example:

;

—Af =0 in

0 =10 ODFDUFN

06 __
\ JIOn

—in on I

It increases of one order the regularity of 8 and

/ ]V(9|2da::—/j8-nds
Qo I

which guarantees the decrease of J.
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‘-V- NUMERICAL ALGORITHM'

1. Initialization of the level set function g (including holes).

2. Iteration until convergence for k£ > 1:

(a) Computation of up and pi by solving linearized elasticity problem with
the shape . Evaluation of the shape gradient = normal velocity V

(b) Transport of the shape by Vj, (Hamilton Jacobi equation) to obtain a new
shape g 1.

(¢) (Occasionally, re-initialization of the level set function 1.1 as the signed

distance to the interface).
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(Algorithmic issues]

[ Quadrangular mesh.

[J Finite difference scheme, upwind of order 1, for the Hamilton Jacobi equation
(¢ is discretized at the mesh nodes).

[ Q1 finite elements for the elasticity problems in the box D

y

—div (A*e(u)) =0 in D

u=20 on FD

(A*e(u))n =g on I'y

\ (A*e(u))n =10 on 0D\ (I'yUTp).

[I Elasticity tensor A* defined as a “mixture” of A and a weak material
mimicking holes
A*=0A with 107°<60<1
and # = volume of the shape ¢ < 0 in each cell (piecewise constant
proportion).
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(Upwind Scheme]

oY
ot

solved by an explicit 1st order upwind scheme

op T — o
At

Ve =0 in D

— max(jf',0) g* (DF 47, Dy ) — min(j7,0) g~ (D47, Dy vyt) = 0

with Dyl = w“z;% , DY = i _Aﬁi_l, and

g~ (d",d™) = /min(d+,0)2 + max(d—,0)?,

gt (d*,d™) = v/max(d+,0)2 4+ min(d—,0)2.
[] 2nd order extension.

[ Easy computation of the curvature (for perimeter penalization).
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Re-initialization

In order to regularize the level set function (which may become too flat or too

steep), we reinitialize it periodically by solving

%—f + Sign(¢0)<|vx¢| - 1) =0 forxeD,t>0

Zb(t =0, ZC) — %(fﬂ)

which admits as a stationary solution the signed distance to the initial interface

{to(z) = 0}.
[1 Classical idea in fluid mechanics.

[ A few iterations are enough.

[0 Improve the convergence of the optimization process (for fine meshes).
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(Choice of the descent Step]

Two different strategies:

At each elasticity analysis, we perform a single time step of transport:
[1 The descent step is controlled by the CFL of the transport equation.
[1 Smooth descent.
[0 Lengthy computations (sub-optimal descent step).
At each elasticity analysis, we perform many time steps of transport:
[1 The descent step is controlled by the decrease of the objective function.

[1 Fast descent but requires a good heuristic for monitoring the number of time

steps.
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NUMERICAL EXAMPLES

See the web page

http://www.cmap.polytechnique.fr/ optopo/level en.html
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Short cantilever

G. Allaire
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(Medium cantilever: iterations 0, 10 and 50]
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(Convergence history]
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Influence of re-initialization

G. Allaire
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(Inﬂuenee of perimeter constraint]
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Design dependent loads - 1 I

Force g applied to the free boundary

2

—div (Ae(u)) =0 in

u=~0 onl'p

Ae(u))n =g on 'y UT
| (Ae(w))

Compliance minimization
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(Optimal mast under a uniform WindJ
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Design dependent loads - 2 I

Pressure py applied to the free boundary

i

—div (Ae(u)) =0 in
u=~0 onl'p

_ (Ae(u))n=pon on 'y UT

Compliance minimization

J(Q)_/FUFNpOn-uds:/QAe(u)-e(u)da;,

/F 6 - n<2div (pou) — Ae(u) - e(u))ds
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(Sea star under a uniform pressure loadj
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‘ Non-linear elasticity I

in €

on FD

—div (T'(F)) f
U 0

T(F)n g on 'y,

with the deformation gradient F' = (I + Vu) and the stress tensor

G. Allaire

T(F) = F()\Tr(E)I + QME) with E = %(FTF )y
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Conclusion

Efficient method.
With a good initialization, comparable to the homogenization method.
No nucleation mechanism.

Can be pre-processed by the homogenization method.

Can handle non-linear models, design dependent loads and any smooth

objective function.




