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We consider plane laminar 
ames with multicomponent transport and complex chem-istry. The governing equations are derived from the kinetic theory of gases by using theclassical isobaric approximation. An arbitrary number of reversible chemical reactions andtemperature dependent species speci�c heats are considered in the model. The most generalform for multicomponent transport 
uxes given by the kinetic theory is also taken into ac-count. Upon �rst considering a bounded domain and then letting the size of the domain togo to in�nity, we obtain an existence theorem. We also establish that the natural entropyproduction norm associated with multicomponent di�usion is a solution{weighted norm.1. INTRODUCTIONNumerous studies have recently been devoted to plane laminar 
ames with complexchemistry [Hei87] [VV90] [Bon92] [BL93] [VV94] [Bon94]. Important advances have beenmade in these papers which were essentially concerned with irreversible exothermicchemical reaction networks and elementary transport models.In this work, we investigate the 
ame equations derived from the kinetic theory ofdilute polyatomic reactive gas mixtures [EG94]. The reaction network that we consideris composed of an arbitrary number of reversible chemical reactions. The reaction ratesof progress are of Maxwellian type and the rate contants satisfy natural reciprocity rela-tions. Moreover, the most general form for multicomponent transport 
uxes obtainedfrom the kinetic theory is included in the model with mixture dependent transportcoe�cients. In particular, all species second derivatives are coupled through di�u-sive processes and are coupled to the temperature second derivatives through thermaldi�usion, that is, species di�usion due to temperature gradients. The temperaturedependence of species speci�c heats is also taken into account.1



We consider two types of cold boundary conditions. The �rst type is associatedwith the anchored 
ame model [HCC53] and the corresponding domain is the half line[0;1). This model also corresponds to boundary conditions often used in numericalsimulations of complex chemistry 
ames [Ser86] [GS92]. It also modelizes an experimen-tal con�guration where the 
ame is dynamically stabilized far away from the injectiondevice by using laser tomography [Qal84] [Cla85]. The second type of boundary con-ditions that we consider is that of an in�nitly far cold boundary. The correspondingdomain is then the full line (�1;1). In this situation, we use a Heavyside cuto�function for the source term in order to remove the cold boundary di�culty and bothmodels are shown to be equivalent. On the other hand, the hot boundary condition is ofDirichlet type and corresponds to an equilibirum point whose existence and uniquenessis established.We �rst consider the problem on a bounded domain [0; a]. The existence theoremis obtained by using a �xed point formulation and the Leray-Schauder topologicaldegree. The de�nition of the degree is obtained by estimating a priori the solutions.In particular, we obtain for the �rst time an estimate of the maximum temperaturein a 
ame with nontrivial transport. To this purpose, we establish a fundamentalinequality for the quadratic form associated with di�usion matrices, using previousresults on multicomponent transport [Gio91] [EG94]. Combining this inequality withthe entropy conservation equation, we obtain a natural entropy production norm fordi�usive processes which is a solution{weighted norm in the formXk2S Z @xYk � @xYkYk dx;where Yk is the mass fraction of the kth species and S the set of species indices.We then let a ! 1 and obtain an existence theorem as well as exponential con-vergence towards equilibrium at in�nity. A key point in the proof is to derive a lowerbound independent of a for the eigenvalue of the 
ame problem. Exponential con-vergence towards equilibrium is achieved by using entropic estimates and a stabilityinequality concerning the chemical dissipation rate.The governing equations for complex chemistry 
ames are presented in Section 2.In Section 3 we specify the mathematical properties for thermodynamic functions andwe establish existence and uniqueness of the equilibrium state at the hot boundary. Themathematical properties of transport coe�cients are investigated in Section 4 where weestablish the fundamental di�usion inequality and the entropy conservation equation.The equivalence of both problem formulations is obtained in Section 5. Existence on abounded domain is obtained in Section 6 and, �nally, existence of a solution is obtainedin Section 7.2. GOVERNING EQUATIONSThe governing equations for steady plane laminar 
ames with complex chemistryand detailed transport are obtained from the multicomponent reactive 
ow equations|derived from the kinetic theory|under the classical isobaric approximation.2



2.1. Conservation equationsThe equations modeling steady plane laminar 
ames with complex chemistry ex-press the conservation of species mass and energy. The species conservation equationscan be written in the form [Wil85] [EG94]c Y 0k + F 0k = mk!k; k 2 S; (2.1)where c is the mass 
ow rate, Yk the mass fraction of the kth species, \ 0 " the spacederivative operator, Fk the mass 
ux of the kth species, mk the molar mass of the kthspecies, !k the molar production of the kth species, S = [1; n] the set of species indicesand n the number of species assumed to be n � 2.The energy conservation equation can be written in the enthalpy formc h0 + q0 = 0; (2.2)where h is the speci�c enthalpy of the mixture and q the heat 
ux. By using theexpressions of the mixture enthalpy h and of the heat 
ux q, a governing equation forthe absolute temperature T will be obtained in Section 2.6.The unknowns are the mass 
ow rate c, which is a nonlinear eigenvalue of the prob-lem, the mass fraction vector Y = (Y1; : : : ; Yn)? where ? is the transposition symbol,and the enthalpy h|or equivalently the absolute temperature T . It will be convenientto introduce the unknown � de�ned by� = (h; Y1; : : : ; Yn)?: (2.3)The corresponding 
uxes are denoted by� = (q; F1; : : : ; Fn)?; (2.4)and the corresponding sources byw = (0; m1!1; : : : ; mn!n)?: (2.5)The conservation equations can then be written in the compact formc �0 + �0 = w; (2.6)and these equations have to be completed by the relations expressing the transport
uxes Fk, k 2 S, and q, the thermodynamic properties like the enthalpy h, and thechemical source terms !k, k 2 S.2.2. Thermodynamic propertiesThe pressure p is taken to be a positive constantp = Cte; (2.7)3



and the density is given by the state law�(T; Y ) = pRT �Xk2S Ykmk ��1; (2.8)where R the universal gas constant and T the absolute temperature. The speci�cinternal enthalpy h of the mixture is given by the expressionh(T; Y ) =Xk2S Ykhk(T ); (2.9)where the quantity hk is the internal energy per unit mass of the kth species. Thequantity hk = hk(T ) can be writtenhk(T ) = h0k + Z TT0cpk(t) dt; (2.10)where h0k is the enthalpy of formation of the kth species at the positive reference tem-perature T0 and cpk is the speci�c heat at constant pressure of the kth species. Themixture speci�c heat at constant pressure cp is de�ned similarly bycp(T; Y ) =Xk2S Ykcpk(T ): (2.11)The mathematical assumptions concerning the speci�c heats cpk, k 2 S, are speci�edin Section 3.Species mole fractions are also needed for modeling complex chemistry 
ames. In-deed, although mass related quantities like momentum are conserved during molecularcollisions, chemistry production rates and di�usive processes are related to species col-lision rates, and therefore, to molar properties. We denote by Xk the mole fraction ofthe kth species de�ned by Xk(Y ) = mmk Yk; (2.12)where m is the molar mass of the mixture given byPk2S Ykm =Xk2S Ykmk : (2.13)In the following, we will also need the quantity 
k de�ned by
k = Yk=mkPl2S Yl=ml = XkPl2S Xl (2.14)and which essentially represents the mole fraction of the kth species.The natural species variables for 
ame problems are the mass fractions. We havechosen, for convenience, to consider these mass fractions Yk, k 2 S, as formally in-dependent unknowns, and to recover the relation Pk2S Yk = 1 from the conservation4



equations. As a consequence, some care must be taken in de�ning thermodynamicproperties, in order to maintain homogeneity and extensivity. In particular, the rela-tion (2.13) contains a factor Pk2S Yk which avoids various arti�cial singularities, e.g.,when relating the derivatives of mole and mass fractions [Gio90] [Gio91]. After somealgebra, the relations (2.12) (2.13) yields that Pk2S Yk = Pk2S Xk so that we alsorecover the relation Pk2S Xk = 1 from the species equations.2.3. Thermodynamic properties for positive mass fractionsThe thermodynamic properties introduced in Section 2.2 are de�ned for nonneg-ative nonzero mass fractions Y � 0, Y 6= 0. We write z � 0, respectively z > 0,when z = (z1; : : : ; zn) and zk � 0, respectively zk > 0, for every k 2 S. For positivemass fractions Y > 0, however, we can further de�ne the species entropies and freeenthalpies. Indeed, the kinetic theory yields the speci�c entropy of the kth speciessk(T; Y ) = s0pk + Z TT0 cpk(t)t dt� Rmk log(
k); (2.15)where s0pk the formation entropy of the kth species at the positive reference temperatureT0 and pressure p. It will be convenient to de�nespk(T ) = s0pk + Z TT0 cpk(t)t dt (2.16)which represents the entropy of the kth species at pressure p. The speci�c entropy ofthe mixture is then the quantitys(T; Y ) =Xk2S Yksk(T; Y ); (2.17)and will play a fundamental role in the analysis.We will also need the expression of the species free enthalpies gk, k 2 S, that is,the species Gibbs functionsgk(T; Y ) = hk(T )� sk(T; Y )T; (2.18)and the standard free enthalpy gpk at pressure pgpk(T ) = hk(T )� spk(T )T: (2.19)Finally, we introduce for convenience the reduced quantities�pk(T ) = gpk(T )RT ; �k(T; Y ) = gkRT = �pk(T ) + 1mk log(
k); (2.20)The free enthalpies gk, k 2 S, and the quantities �k, k 2 S, will be needed for investi-gating chemical equilibrium and the entropy production rate due to chemistry.5



2.4. Maxwellian chemistryWe consider a system of nR reversible reactions for n speciesXk2S �dkiSk *) Xk2S �rkiSk; i 2 R; (2.21)where Sk is the chemical symbol of the kth species, �dki and �rki the direct and reversestoichiometric coe�cients of the kth species in the ith reaction, and R = [1; nR] the setof reaction indices. Note that all chemical reactions are reversible and that the numberof reactions nR is arbitrary.The molar production rates that we consider are the Maxwellian production ratesobtained from the kinetic theory [EG94]. These rates are obtained in a reactive kineticframework|when the chemistry characteristic times are larger than the mean freetimes of the molecules|and are compatible with the law of mass action [EG94]. Inthis situation the molar production rate of the kth species can be written in the form[Wil85] [EG94] !k =Xi2R �ki ri; (2.22)where �ki = �rki � �dki; (2.23)and where ri is the rate of progress of the ith reaction. This rate ri is given byri = Kdi Yk2S 
�dkik �Kri Yk2S 
�rkik ; (2.24)where 
k is given by (2.14) and Kdi and Kri are the direct and reverse rate constantsof the ith reaction. Note that the reaction rates of progress are usually expressedin terms of species concentrations �Yk=mk, k 2 S, rather than in terms of the 
k,k 2 S. However, the expressions (2.24) are more suited to 
ame problems and areeasily obtained, after a little algebra, making use of the state law and of the isobaricapproximation. On the other hand, the quantities Kdi and Kri are functions of thetemperature and their ratio is the equilibrium constant Kei of the ith reactionKei (T ) = Kdi (T )Kri (T ) ; (2.25)given by logKei (T ) = �Xk2S �kimkR gpk(T )T ; (2.26)where gpk(T ) is de�ned by (2.19).The mathematical properties of the chemical source terms will be speci�ed insection 3. In particular, the stoichiometric coe�cients satisfy element conservation andtotal mass conservation.There are several reasons for considereing only reversible chemical reactions in thenetwork. Indeed, the macroscopic constantsKdi andKri are Maxwellian averaged values6



of molecular chemical cross sections appearing in reactive collisional source terms ofthe species Boltzmann equations [EG94]. However, direct and reverse chemical crosssections are always proportional, as are non reactive cross sections in any Boltzmannequation, as can be shown from quantum mechanics [EG94]. A direct consequence isthe fundamental proportionality relation between the macroscopic direct and reverserate constants Kdi (T ) = Kri (T )=Kei (T ) [EG94]. Consequently, we cannot assume thatone reaction constant vanishes without assuming that both vanish. A second reason forassuming full reversibility is that the model must be able to describe the equilibriummixture at the hot boundary. However, statistical mechanics for uniform mixtures atequilibrium also shows that detailed balance must prevail, so that irreversibility againcannot be assumed. Last, but not least, hundreds of experimental measurements haveshown the validity of the fundamental relation Kdi (T ) = Kri (T )=Kei (T ). Note alsothe di�erence between (2.24) and the rates of progress considered in previous studieswhere the mass fractions appear in place of the mole fractions. This shows that theassumption mk = m, k 2 S, has implicitly been made in all previous studies unlike thepresent paper where the distinction between mass and mole properties is kept.Remark 2.1. Another formalism for describing chemical networks has been intro-duced by Feinberg [Fei95]. In Feinberg's formalism, it is possible to associate an integer,named the default, to each reaction network. In this formalism, only \zero default"reaction networks have a satisfactory behavior for all possible values of the rate con-stants. In Feinberg's formalism, however, direct and reverse constants are assumed tobe independent. Feinberg's negative results thus concern networks for which the ratioKdi (T )=Kri (T ) is arbitrary. This is not the case according to the kinetic theory whichyields the fundamental constraint Kdi (T ) = Kri (T )=Kei (T ). In particular, this relationcan be interpreted as a natural compatibility condition between chemistry and thermo-dynamics. When this fundamental relation is assumed to hold, all classical results fromthermochemistry are valid [SS65] [Kra87] and there are strictly no restrictions on thenumber of chemical reactions|other than obvious combinatorics|or on their lineardependency. In this situation, Feinberg's default can be arbitrarily large, but the corre-sponding networks have a very satisfactory behavior and can be naturally investigatedby using Gibbs classical thermochemistry [SS65] [Kra70] [GM98]Remark 2.2. The direct rate constant is usually approximated by using a generalizedArrhenius empirical relationKdi (T ) = AiT bi exp�� EiRT �;where Ai > 0 is the pre-exponential factor, bi the pre-exponential exponent and Ei � 0the activation energy of the ith reaction, but the exact expression of Kdi (T ) will not beneeded in the following. Note that these expressions are not bounded for large T whenbi is positive.2.5. Transport 
uxesThe expressions for transport 
uxes are obtained from the kinetic theory of dilutepolyatomic gas mixtures. We �rst express these 
uxes in the general situation of7



nonnegative mass fractions, that is, when Y � 0, Y 6= 0. Such a dictinction betweenpositive and nonnegative mass fractions naturally arises in the kinetic theory of dilutepolyatomic gas mixtures [Gio91] [EG94].Under the isobaric approximation, the species 
uxes Fk, k 2 S, and the heat 
uxq are in the form Fk = �Xl2S Ckl�
0l + 
le�l(T 0=T )�; k 2 S; (2.27)q = ��T 0 +RTXl2S(e�l=ml)Fl +Xl2S hlFl; (2.28)where C = (Ckl)k;l2S is the 
ux di�usion matrix, 
k the quantity given in (2.14),e� = (e�1; : : : ; e�n)? the rescaled thermal di�usion ratios, and � the thermal conductivity.For positive mass fractions, one can further introduce the species di�usion veloci-ties Vk, k 2 S, de�ned by Vk = Fk�Yk ; (2.29)and from (2.27), one can express these velocities asVk �Xl2S Dkl�
0l + 
le�l(T 0=T )�; k 2 S; (2.30)where D = (Dkl)k;l2S is the di�usion matrix de�ned by Dkl = Ckl=(�Yk), k; l 2 S.The di�usion velocities turn out to be of fundamental importance since the matrix Dis symmetric positive semi-de�nite and is the matrix associated with entropy productionas will be shown in Section 4. Note that the multicomponent 
uxes that we use havenatural symmetry properties [WT62] [FK72] [Gio91] [EG94] which have arti�cially beendestroyed in [HCB54].Remark 2.3. The kinetic theory speci�cally yields Equation (2.27) with p0k=p in placeof 
0k, where pk = �RTYk=mk = p
k is the partial pressure of the kth species [EG94].However, from the isobaric approximation, we have p0k=p = (pk=p)0 = 
0k.Alternate expressions for the di�usion velocities and the heat 
ux vector areFk = �Xl2S Ckl
0l � �Yk�k(T 0=T ); k 2 S; (2.31)q = �b�T 0 � pXk2S �k
0k +Xk2S hkFk; (2.32)where � = (�1; : : : ; �n)? are the thermal di�usion coe�cients, and b� the partial ther-mal conductivity. These expressions are more classical than (2.27) (2.28) and lead toOnsager reciprocal relations. However, the expressions (2.27) (2.28) are more practicalfrom a mathematical point of view. 8



Note that all species second derivatives are coupled through the 
ux di�usioncoe�cients C and that multicomponent 
uxes naturally involve mole fractions deriva-tives. In addition, species and temperature derivatives are coupled through the thermaldi�usion coe�cients e�. These e�ects were not previously considered in 
ame models.The mathematical properties of the transport coe�cients �, C, D, and e� arespeci�ed in section 4.2.6. The temperature equationIn order to derive a governing equation for the absolute temperature T , we canuse equations (2.1) (2.2) and the de�nition of the mixture enthalpy h. After a littlealgebra, we easily obtain thatcpT 0 = ��q �Xk2S hkFk�0 �Xk2S cpkT 0Fk �Xk2S hkmk!k: (2.33)Using now the expression (2.28) for the heat 
ux q, we �nally obtain the temperatureequationc cpT 0 = ��T 0 �RTXl2S(e�l=ml)Fl�0 �Xk2S cpkT 0Fk �Xk2S hkmk!k: (2.34)It is worthwhile to point out several di�erences between the temperature equation(2.34) and the temperature equations considered in previous work. In all previouswork, it has been assumed that the species speci�c heats are species independent, thatis, cpk = cp, k 2 S. In this situation, one hasXk2S cpkT 0Fk = cp T 0 �Xk2SFk� = 0;anticipating the mass constraint Pk2S Fk = 0. In this situation, one also hasXk2S hkmk!k =Xk2S h0kmk!k;anticipating the mass conservation relation Pk2Smk!k = 0, since the temperaturedependent part of the enthalpies kk � h0k = cp(T � T 0) are identical. Moreover, thetransport and speci�c heats coe�cients were generally assumed to be constant with aresulting simpli�ed equation in the formc cpT 0 = �T 00 �Xk2S h0kmk!k:In comparison, we �rst note that in (2.34) the source term Pk2S hkmk!k is notbounded a priori even when assuming that the rate !k, k 2 S, are bounded, sincethe enthalpies are linearly increasing functions of temperature. In addition there isa quadratic derivative term Pk2S cpkT 0Fk, and the coe�cients � and cp are not con-stants. Finally, maximum principles cannot be used when thermal di�usion is included,that is, when e� is nonzero. 9



2.7. Boundary conditionsWe now specify the 
ame boundary conditions at the cold and hot boundaries.We assume that the cold boundary is on the left side and the hot equilibrium boundaryon the right side.The right boundary conditions is in the form�(1) = �e (2.35);where �e is an equilibrium point where the source term vanish w(�e) = 0. Existenceand uniqueness of the proper equilibrium �e is established in Section 3. In particular,this equilibrium state is such that Y e > 0, that is, satis�es Y ek > 0, k 2 S, where thesuperscript e is used to denote the value at � = �e of any function of the state variables.On the other hand, we consider two types of cold boundary conditions. The �rsttype corresponds to the anchored 
ame model with an unknown function � de�ned onthe the half line [0;1) and with the boundary conditionsc(�(0)� �f) + �(0) = 0; (2.36)and T (0) = T i; (2.37)where �f is a given nonequilibrium state and T i is a temperature such that T f < T i.The state �f is such that Y f � 0, Pk2S Y fk = 1, and such that each species of themixture is reachable from Y f by the chemical network. The superscript f is used todenote the value at � = �f of any function of the state variables.The anchored 
ame model has been introduced by Hirschfelder, Curtiss and Camp-bell [HCC53]. This model corresponds to an idealized adiabatic 
ame holder located atthe origin. The anchored 
ame model supresses the cold boundary di�culty withoutany arti�cial modi�cation of the source term [HCC53] [BL82] [Wil85]. This model alsocorresponds to practical experimental con�gurations. Indeed, it is possible to inject areactive mixture through a porous plate in a tube and to stabilize a 
ame far from theinjection device by using laser tomography which triggers the injection velocity [Qal84][Cla85]. For such 
ames, by integrating the conservation equations through the adia-batic porous burner, we obtain Equation (2.36). By choosing a temperature T i slightlyabove the cold mixture temperature, we then recover the model. For exothermic sys-tems, the temperature T i can also be interpreted as an ignition temperature [Wil85].Finally, the boundary conditions (2.36) (2.37) are also used in numerical modeling ofcomplex chemistry 
ames [Ser86] [GS92].It is also possible to consider an unknown function � is de�ned on the real line(�1;1) and to replace (2.36) by the condition�(�1) = �f : (2.38)The relation (2.37) is still needed in order to remove the translational invariance ofthe model. However, it is well known that the chemistry source terms only vanish atequilibrium points, so that we have w(�f) 6= 0 and (2.38) cannot be satis�ed. Thisproblem is the well known \cold boundary di�culty". Various cuto� functions  havethen been used to modify the source terms w into  w, in order to satisfy the boundary10



condition (2.38). In this paper, we consider a cuto� function in the form  (x) =1[0;1)(x) and thus source terms in the form 1[0;1)w. For this cuto� function, weestablish rigorously in Section 5 that both formulations on (�1;1) and [0;1) areequivalent. As a consequence, it will be su�cient to investigate the anchored 
ameproblem on [0;1).Note that when a continuous function of the state variables is used as a cuto�function, it introduces arti�cial equilibrium points in the phase space, and the dynamicsof the reactive system has to guarantee that such arti�cial points are not further reachedin the 
ame. For a priori exothermic systems, any increasing function of temperaturecan be used as a cuto� function. However, this is no longer the case for arbitraryreversible chemical networks, due to the lack of a priori monotonicity of the temperatureand more generally of state functions when multicomponent transport is considered.Remark 2.4. A model with a cuto� term  which is a continuous function of temper-ature has been used by A. Bonnet in [Bon92] [Bon94]. The 
ame model considered inthis paper corresponds to a generalized chemistry of irreversible type and to the simpletransport model � = �d �0 where d is a constant. However, it turns out that Bonnet'sproof that the 
ame does not reach again the ignition temperature T i is wrong.Indeed, Bonnet has used strong solutions of (2.1) with a modi�ed source term1[T a;1)(T ) w involving a temperature dependent Heavyside function 1[Ta;1)(T ) withT a = T i + �. Bonnet is claiming the existence of solutions of the modi�ed equationswhose second derivatives are Lipchitz continuous and which satisfy pointwise the mod-i�ed governing equations. He then shows that these solutions are indeed solutionsof the original equation since one establishes that T � T a when the source term is1[T a;1)(T ) w. This yields a lower bound for the temperature of the original problemwith a non modi�ed source term. However, these strong solutions do not exist. Indeed,the existence argument of Bonnet is �rst wrong since when  k(z)! 1[T a;1)(z) point-wise as k !1, where  k is continuous, and when Tk ! T by a compacity argument,then we do not have  k(Tk)! 1[T a;1)(T ) pointwise since z ! 1[T a;1)(z) is discontin-uous. Moreover, one can easily build the counterexemple �du00 = 1 over [�2; 2] withu(�2) = 2 and u(2) = 2 whose solution is u(x) = x2=2. If a solution \�a la Bonnet" of�dv00 = 1v�1 would exist, one would get v � 1 and thus u = v, which is absurd.Remark 2.5. Note the di�erence between anchored 
ames and burner stabilized 
amesfor which the mass 
ux is imposed. Denoting by cf this prescribed mass 
ux, burnerstabilized 
ames satisfy the boundary conditionscf�Y (0)� Y f�+ F(0) = 0: (2.39)T (0) = T f ; (2.40)and the imposed mass 
ux cf is such that 0 < cf < c where c is the eigenvalue ofthe anchored 
ame problem. The anchored 
ame problem thus corresponds to theidealized limit of an adiabatic burner with c�h(0)� hf�+ q(0) = 0, whereas heat lossesare present for burner stabilized 
ames with T (0) = T f .11



3. THERMOCHEMISTRY AND EQUILIBRIUM POINTSIn this section we specify the mathematical assumptions concerning the thermo-dynamic functions and the source terms. We then characterize the equilibrium state�e as a unique equilibrium point in a given conservation manifold. From this charac-terization, we establish existence and uniqueness of the equilibrium state �e. We alsoinvestigate various thermodynamic functions over element conservation manifolds forfuture a priori estimates.3.1. ThermodynamicsThe mathematical assumptions concerning thermodynamic properties are the fol-lowing.(H1) The species molar masses mk, k 2 S, and the gas constant R are positiveconstants. The formations enthalpies h0k, k 2 S, and the formation entropiess0pk , k 2 S, are constants. The speci�c heats cpk, k 2 S, are C1 functionsof T 2 [0;1). Furthermore, there exist positive constants cp and cp with0 < cp � cpk(t) � cp, for t � 0, and k 2 S.Note that the thermodynamic functions cpk, k 2 S, and hk, k 2 S, are de�ned forT � 0, so that cp and h are de�ned for T � 0 and Y � 0. On the other hand, thefunctions sk, k 2 S, gk, k 2 S, and �k, k 2 S, and s, are only de�ned for T > 0 andY > 0. One may also easily check that the domain of de�nition of s can be extentedto T > 0 and Y � 0, Y 6= 0 by using 0 log 0 = 0. Nevertheless, the gas species speci�cheats, and thus the enthalpies, are de�ned up to zero temperature, but not the gasentropy which explodes like log T . The extension up to zero temperature of speci�cheats and enthalpies is commonly used in thermodynamics. However, the entropy isunbounded for small temperatures since we consider gaseous mixtures.From assumption (H1) we �rst obtain that the various thermodynamic functionsare smooth. Since the pressure p is constant, all thermodynamic properties have alsobeen de�ned in terms of (T; Y ). Since the natural conserved variables in 
ame problemsare (h; Y ), we now investigate the map � : (T; Y )! (h; Y ).Lemma 3.1. The map � : (T; Y ) ! (h; Y ) is a C1 di�eomorphism from T > 0,Y � 0, Y 6= 0, onto H whereH = f (h; Y ); h >Xk2S Ykhk(0); Y � 0; Y 6= 0 g: (3.1)Proof. This comes directly from the formulah(T; Y ) =Xk2S Ykhk(0) + Z T0 �Xk2S Ykcpk(t)� dt;and the positivity properties of the speci�c heats cpk, k 2 S.12



Lemma 3.2. Denote by � the function de�ned over H by�(h; Y ) = s��(h; Y )� = s(T; Y ): (3.2)Then we have@h� = @�0� = 1T ; @Yk� = @�k� = �gkT = �R�k; k 2 S; (3.3)and the Euler relation � = h@��; �i holds. Furthermore, @2�� is given by� 
(@2�k�l�)x; x�R = (x0 �Pk2S hkxk)2RT 2cp +Xk2S (xk=mk)2Yk=mk � (Pk2S xk=mk)2Pl2S Yl=ml ; (3.4)where hx; yi denotes the scalar product between vectors x and y. As a consequence, �is concave and N(@2��) = R�.The proof of Lemma 3.2 is straightforward and is omitted. In order to simplify thenotation, we will most of the time use a single symbol in order to denote a function of(T; Y ) or a function of (h; Y ) with an exception for �. We will further need the matrixA de�ned by A = dYX and a direct calculation yields8><>:Akk = mmk + 
k�1� mmk �; k 2 S;Akl = 
k�1� mml �; k; l 2 S; k 6= l: (3.5)It is interesting to note that the matrix A = dYX is invertible and that we haveAY = X where X = (X1; : : : ; Xn)? [Gio90].3.2. ThermochemistryWe introduce here a set of assumptions concerning the chemical reactions andthe chemical production rates. The reactive species are assumed to be constituted byelements and we denote by Ekl the number of lth element in the kth species. We alsodenote by E = [1; nE] the set of element indices and by nE � 1 the number of elements.(H2) The stoichiometric coe�cients �dki, and �rki, k 2 S, i 2 R, and the elementcoe�cients Ekl, k 2 S, l 2 E, are nonnegative integers. The element vectorsEl, l 2 E, de�ned by El = (E1l; : : : ; Enl)?, and the reaction vectors �i, i 2 R,de�ned by �i = (�1i; : : : ; �ni)?, satisfy the element conservation relationsh�i; Eli = 0; i 2 R; l 2 E: (3.6)We also de�ne the vectors �di = (�d1i; : : : ; �dni)?, and �ri = (�r1i; : : : ; �rni)?, i 2 R,which satisfy h�di ; Eli = h�ri ; Eli, i 2 R. The space spanned by the reactionvectors is denoted by R = spanf �i; i 2 R g and the space spanned by theelement vectors is denoted by E = spanf El; l 2 E g in such a way thatR � E? and E � R?. 13



(H3) The element masses eml, l 2 E, are positive constants and the species molarmasses mk, k 2 S, are given bymk =Xl2E eml Ekl: (3.7)Denoting by m the mass vector m = (m1; : : : ;mn)?, these relations can bewritten in vector form m =Xl2E eml El: (3.8)Remark 3.3. The elements may taken to be the atomic elements provided that thecorresponding vectors are independent. When this is not the case, it is �rst neces-sary to eliminate linearly dependent atomic elements. For realistic complex chemistrynetworks, the number of chemical reactions is always much larger than the number ofchemical species and one usually has R = E?. In other words, the chemical reactionsare spanning the largest possible space. When this is not the case, one has simply touse the space R? instead of E [Kra70].In the following, we also have to use the mass weighted production rates mk!k,k 2 S. To this purpose, we introduce the mass weights matrix M , of order n, de�nedby M = diag(m1; : : : ;mn): (3.9)The mass weighted stoichiometric coe�cients are then the vectors M�i, i 2 R, andthe speci�c element compositions are the vectors M�1El, l 2 E. The correspondingspaces MR and M�1E , spanned by these mass weighted vectors, are then such thatMR � (M�1E)? and M�1E � (MR)? in the composition phase space Rn. Fromelement conservation and the de�nition of species masses, we �rst deduce the followingmass conservation properties.Lemma 3.4. The vector of chemical production rates ! = (!1; : : : ; !n)? can be writtenin vector form ! =Xi2R ri �i; (3.10)so that ! 2 R and M! 2 MR. In addition, the unity vector U 2 Rn de�ned byU = (1; : : : ; 1)?, satis�es U 2 (MR)? so that we have the total mass conservationrelation hU;M!i =Xk2Smk!k = 0: (3.11)Proof. These properties are straightforward from (H2) and (H3) which imply thatU =Xl2E emlM�1El; (3.12)so that U 2 (MR)?. 14



3.3. Alternate expressions for the chemical production ratesIt will be usefull in the following to decompose the production rates between thecreation and destruction rates.Lemma 3.5. The chemical production rates !k, k 2 S, can be split into!k = Pk � Yk bNk; k 2 S; (3.13)where Pk and bNk, are respectively the creation and reduced destruction rates of thekth species. These rates are such that Pk � 0, bNk � 0, and are smooth functions of(T; Y ), for T > 0, Y � 0, Y 6= 0.Proof. We simply use (2.22){(2.24) and write that !k = Pk �Nk, wherePk =Xi2R��rkiKdi Yl2S 
�dlil + �dkiKri Yl2S 
�rlil �; (3.14)and Nk =Xi2R��dkiKdi Yl2S 
�dlil + �rkiKri Yl2S 
�rlil �: (3.15)Since the stoichiometric coe�cients are nonnegative integers, we can now write thatNk = 
k� Xi2R�dki�1 �dkiKdi 
�dki�1k Yl2Sl6=k 
�dlil + Xi2R�rki�1 �rkiKri
�rki�1k Yl2Sl6=k 
�rlil �; (3.16)so that Nk = Yk bNk, k 2 S, wherebNk = 1mk �Xl2S Ylml ��1� Xi2R�dki�1 �dkiKdi 
�dki�1k Yl2Sl6=k 
�dlil + Xi2R�rki�1 �rkiKri
�rki�1k Yl2Sl6=k 
�rlil �;(3.17)which is a smooth function of (T; Y ), for T > 0, Y � 0, Y 6= 0.We now rewrite the rate of progress (2.24) by introducing new reaction constants,making use of the equilibrium constants. We de�ne bKi, i 2 R, bylog bKi = logKdi (T )� hM�di ; �pi = logKri (T )� hM�ri ; �pi; (3.18)where �pk = gpk=(RT ), k 2 S, using logKei = �hM�i; �pi = hM�di ; �pi � hM�ri ; �pi, fori 2 R. We can then rewrite (2.24) in the formri = bKi�exphM�di ; �pi Yk2S 
�dkik � exphM�ri ; �pi Yk2S 
�rkik �; (3.19)and from the de�nition �k = �pk + (1=mk) log 
k, k 2 S, we �nally obtain thatri = bKi�exphM�di ; �i � exphM�ri ; �i�: (3.20)15



The assumptions concerning the rate constants can then be written in terms of thequantities bKi, i 2 R.(H4) The rate constants bKi, i 2 R, are C1 positive functions of T 2 (0;1).Note that we neither assume that the quantities Kdi , i 2 R, or Kri , i 2 R, arebounded functions of the temperature T , as in previous studies, nor that the quantitiesbKi, i 2 R, are bounded.3.4. Equilibrium pointsIn this section, we �rst restate that detailed balance holds at any equilibrium point.We then establish existence and uniqueness of the proper equilibrium point.Proposition 3.6. The reduced entropy production due to chemical reactions�(T; Y ) = �h�;M!i = � 1RT Xk2S gkmk!k;de�ned for T > 0 and Y > 0, is nonnegative and admits 0 as a minimum at any pointwhere source terms vanish. Any point (T e; Y e1 ; : : : ; Y en ) with T e > 0 and Y ek > 0, k 2 S,where the source term vanishes!k(T e; Y e1 ; : : : ; Y en ) = 0; k 2 S; (3.21)is also such that the rates of progress of each reaction vanishri(T e; Y e1 ; : : : ; Y en ) = 0; i 2 R; (3.22)which can also be written in the formD�(T e; Y e1 ; : : : ; Y en );M�iE = 0; i 2 R: (3.23)Proof. Rewritting � in the form� = � 1RT Xi2Rk2S gkmk�kiri = �Xi2R 
�;M(�ri � �di )� ri;and using (3.20), we obtain that� =Xi2R bKi�h�;M�di i � h�;M�ri i� �exph�;M�di i � exph�;M�ri i�; (3.24)so that �(T; Y ) � 0 and �(T; Y ) = 0 if and only if h�;M�ii = 0, i 2 R, that is to say,if and only if ri = 0, i 2 R. In addition, ri = 0, i 2 R, if and only if !k = 0, k 2 S,from the expression of �. 16



De�nition 3.7. A point (T e; Y e1 ; : : : ; Y en ) with T e > 0 and Y e > 0 which satis�es theequivalent properties of Proposition 3.6 will be termed an equilibrium point.In order to characterize the equilibrium point �e, we now multiply (2.1) by anyvector u 2 (MR)? and we obtain thatc hY; ui0 + hF ; ui00 = 0: (3.25);Integrating formally over [0;1)|or equivalently over (�1;1)|we deduce thathY e � Y f ; ui = 0; (3.26)keeping in mind that we only seek solutions with a positive mass 
ow rate c. Notethat such formal integrations can easily be rigorously justi�ed. As a consequence, theequilibrium point �e must be such that Y e 2 Y f +MR. Similarly, integrating (2.2)yields that he = hf ; (3.27)and from the isobaric approximation we also have pe = pf = p.As a consequence, we have to investigate existence and uniqueness of the equilib-rium point in the a�ne submanifold Y f +MR with a given speci�c enthapy he = hf .Existence of equilibrium states is generally obtained by extremalizing a functional overa conservation manifold. The functional to be maximized or minimized depends onwhich thermal properties are kept �xed [SS65] [Kra70]. In our situation, since we im-pose the pressure p and the speci�c enthalpy h, the proper functional to be maximizedis the speci�c entropy �. Moreover, there are two variants depending if the formulationis in terms of constrained [SS65] or free [Kra70] variables. The former method is moresuited to the mas fractions variables and will be used in this paper.From the above consideration, we seek for the equilibrium mass fractions Y e inthe conservation simplexX = (Y f +MR) \ (0;1)n \ fY; Xk2S Ykhk(0) < hf g: (3.28)In order to establish existence and uniqueness of the equilibrium �e, we assume thatT f > 0, Y f � 0, hY f ; Ui = 1 and that (Y f +MR) \ (0;1)n 6= ;. When the latterproperty does not hold, we simply have to eliminate species from the network. Thisproperty is weaker than the reachability property needed for homogeneous reactorsintroduced in [VH85].Proposition 3.8. Assume that (H1){(H4) hold, that �f 2 H, Y f � 0, hY f ; Ui = 1,(Y f +MR) \ (0;1)n 6= ;. Then there exists a unique equilibrium vector Y e in thesimplex X where the source term ! vanishes. At Y e, the reaction rates of progress alsovanish and �e 2 (MR)?.Proof. First note that X is nonempty since there exists Y p 2 Y f +MR with Y p > 0so that (1� �)Y f + �Y p is in X for small positive � . We characterize the equilibriumpoint Y e as the only extremum of the function Y ! �(hf ; Y ) which is a C1 functionof Y over X . The partial derivative of �(hf ; Y ) with respect to the mass fractions Y is@Y �(hf ; Y ) = �R�;17



and �(hf ; Y ) is strictly concave over the convex set X . Indeed, we have from (3.4)� 1R Xk;l2S�@2YkYl�(hf ; Y )�xkxl =Xk2S (xk=mk)2Yk=mk � (Pk2S xk=mk)2Pl2S Yl=ml ; (3.29)so that @2Y �(hf ; Y ) is negative semide�nite and N�@2Y �(hf ; Y )� = RY . However, wehave Y =2MR from MR � U? and Y =2 U? since Y > 0 over X .Because we want to maximize �(hf ; Y ), we only need to consider the subset XX = fY 2 X ; �(hf ; Y ) > �(�f)� 1 g:This set X is convex since � is concave, is nonempty since (1� �)Y f + �Y p 2 X for �small and positive. The mass fractions are bounded over X since Y 2 X implies Y > 0and hY; Ui = hY f ; Ui from the mass conservation constraint U 2 (MR)?. Moreover,over the set X, the temperature T (hf ; Y ) is easily seen to be positively bounded frombelow since � is bounded from below. This implies that there exists a positive ���1�X� � f (T; Y ); � � T; Y � 0; hY; Ui = 1 g;where s is de�ned and continuous. As a consequence, the function �(hf ; Y ) can beextended over the closure X of X. Therefore, �(hf ; Y ) admits a maximum on thisconvex compact set. Denoting Y m any point where the maximum is reached, we claimthat Y m is not on the boundary of X. Of course, it cannot be reached at the boundary� = �(�f)� 1. On the other hand, it can neither be reached at the boundaries Yk = 0,k 2 S. Indeed, considering any point Y in in the interior of X, the function u(�) =��hf ; �Y in + (1� �)Y m� is continuous over [0; 1], di�erentiable over (0; 1] and reachesits maximum for � = 0. However, over the interval (0; 1], the derivative of u is givenby u0(t) = h@Y �; Y in � Y mi = � Xk2SY mk =0(@Yk�)Y ink + Xk2SY mk >0 (@Yk�)(Y ink � Y mk );with @Y � evaluated at �hf ; �Y in + (1� �)Y m�. This implies that u0 is positive in theneighborhood of � = 0, since @Yk��hf ; �Y in + (1� �)Y m� goes to �1 for � ! 0 whenY mk = 0 whereas the sum over Y mk > 0 remains bounded, an obvious contradiction.As a consequence, �(hf ; Y ) reaches its maximum in the interior of X , and, thanksto the strict concavity of �(hf ; Y ), this maximum is unique and we denote by Y e thecorresponding point.Since this maximum is reached in the interior of X we must have�e = �(he; Y e) 2 (MR)?: (3.30)As a consequence, � = �h�;M!i vanishes at (he; Y e) which is therefore an equilibriumpoint. Conversely, from Proposition 3.7, any equilibrium point on the simplex X issuch that the quantities h�;M�ii, i 2 R, vanish so that the partial derivatives of�(hf ; Y ) along the simplex are zero. Since �(hf ; Y ) is a strictly concave function over18



X , it reaches a maximum at this point. Therefore, this point coincides with the uniquemaximum of �(hf ; Y ) and the proof is complete.In the following proposition, we investigate how the equilibrium point �e dependson the cold state �f following [Kra70].Proposition 3.9. Denote by Q the orthogonal projector onto (0;MR)?. Then theequilibrium point �e only depends on Q(�f) and is a smooth function of Q(�f).Proof. The equilibrium point �e only depends on Q(�f) by construction. Denoteby v1; : : : ; vn an orthonormal basis of Rn such that v1; : : : ; vd is a basis of MR andvd+1; : : : ; vn a basis of (MR)?, where d = dim(R). The vectors (1; O)?|whereO = (0; : : : ; 0)? 2 Rn|and (0; vi)?, for d+1 � i � n, form a basis of (0;MR)? and thecorresponding components of Q(�f) are hf = h�f ; (1; O)?i and hY f ; vii, d + 1 � i � n,respectively. The equilibrium point �e is then the unique solution (h; Y ) of the system8><>: h = hf ;hY; vii = hY f ; vii; d+ 1 � i � n;h�(h; Y ); vii = 0; 1 � i � d:The jacobian matrix of this system is easily shown to have full rank at equilibrium �esince N(@Y �) \ (MR) = f0g, so that the implicit function theorem applies.Finally, the assumptions concerning the cold state �f and the equilibrium temper-ature T e are the following.(H5) The cold state �f is such that �f 2 H, so that T f > 0 and Y f � 0. The massfractions Y f also satisfy hY f ; Ui = 1 and(Y f +MR) \ (0;1)n 6= ;;and we have T f < T i < T e.3.5. A local stability inequalityIn this section we restate a stability inequality �rst derived by Boillat and Pousinunder similar assumptions [Boi95] [Pou93]. Remark �rst that the manifold �f+(0;MR)can also be written Q(�) = Q(�f) or equivalently Q(�) = Q(�e).Proposition 3.10. There exists a neigborhood V of the equilibrium point �e and acontant � such that the inequality �e � �(hf ; Y ) � � � holds on V \ X . That is, wehave 8� 2 V \ fQ(� � �e) = 0 g; �(�e)� �(�) � � �(�):Proof. We �rst note that� =Xi2R bKi�hM�di ; �i � hM�ri ; �i� �exphM�di ; �i � exphM�ri ; �i�; (3.31)19



where bKi, i 2 R, are positive functions. As a consequence, there exists a neighorhoodof �e such that � Xi2RhM�i; �i2 � �; (3.32)for a positive constant �.On the other hand we note that
�� �e; Y � Y e� = DZ 10 (@Y �)�Y e + �(Y � Y e)�d� (Y � Y e); (Y � Y e)E;and by using the negative de�niteness of R@Y � = @2Y � over MR we obtain that in theneighborhood of �e and on the simplex X we havekY � Y ek2 � ����
�� �e; Y � Y e����:Denoting by � the orthogonal projector onto MR, this implies thatkY � Y ek � � 

�(�� �e)

since Y � Y e = �(Y � Y e) on X . Moreover, we also have� � �e = DZ 10 Z �0 (@2Y �)�Y e + t(Y � Y e)� dt d� (Y � Y e); (Y � Y e)E:so that in the neiborhood of Y e we have�e � � � � kY � Y ek2 (3.33)since we stay on the simplex X where @2Y � is negative de�nite. Combining the aboveinequalities yields that �e � � � � 

�(�� �e)

2 � ��; (3.34)since 

�(�� �e)

 � � Xi2RhM�i; �� �ei2 = � Xi2RhM�i; �i2and the proof is complete.A straightforward extension of the preceding proof yields the following inequality.Proposition 3.11. There exists a neigbornood V of the equilibrium point �e and apositive constant � such that8� 2 V; �(ve)� �(�) � � �(�);where ve denotes the unique equilibrium point on � + (0;MR).20



3.6. Boundary equilibrium pointsIn Section 3.4, we have shown existence and uniqueness of the proper equilibrium�e in the reaction simplex X . From Proposition 3.6 we also know that any point inX where the chemical production terms vanish coincides with the unique equilibriumpoint. In this section, we further investigate the boundaries|with respect to the massfractions|of the reaction simplex X , which may hide points where the productionterms vanish but which are not a global maximum of the entropy function over X .De�nition 3.12. A point (T; Y ) with T > 0 and Y � 0, Y 6= 0 is said to be aboundary equilibrium point if !(T; Y ) = 0 and if there exists at least a species k 2 Ssuch that Yk = 0.Note that it is always possible to construct reaction networks which have boundaryequilibrium points, e.g., by adding a given species both as a reactant and as a productin each reaction of a given network.Proposition 3.13. Assume that (T; Y ) is a boundary equilibrium point and de�neS+ = f k 2 S; Yk > 0 g and S0 = f k 2 S; Yk = 0 g. Let us introduce the setsR+ = f i 2 R; 8k 2 S0; �dki = 0 and �rki = 0 g;R0 = f i 2 R; 9k 2 S0; �dki > 0 or �rki > 0 g:Then at (T; Y ) we have ri = 0, for all i 2 R and Y + is an equilibrium point of the S+mixture for the R+ chemical network.Proof. For any k 2 S0, the destruction rate vanish Yk bNk = 0, so that !k = 0 impliesthat Pk = 0. Since Pk is a sum of nonnegative terms, these terms must all vanish.This shows that ri = 0 for any reaction i 2 R0. On the other hand, considering thesubmixture S+, and the chemical subnetwork R+|which may be empty|we concludethat Y + is an equilibrium point of the submixture S+.Note that equilibrium points|which are interior to the simplex X|only dependon the space spanned by the reaction vectors �i, i 2 R. On the other hand, boundaryequilibrium points depend on the e�ective values of the integer stoichiometric coe�-cients �di and �ri , i 2 R.We now give a su�cient condition on stoichiometric coe�cients which automati-cally eliminates boundary equilibrium points provided that all elements are present inthe reactive mixture.De�nition 3.14. A reaction network will said to have the decomposition chain prop-erty if for any T > 0 and any Y � 0, Y 6= 0, we have!(T; Y ) = 0 and 9k 2 S; Yk = 0 =) 9l 2 E; hY;M�1Eli = 0:In other words, a boundary equilibrium point can only be obtained provided thatone element is missing in the mixture at this point. The reaction scheme describing thecombustion of hydrogen in air used in [GS92] has the decomposition chain property forinstance. Heuristically, a reaction scheme has the decomposition chain property when21



su�cient three body recombination/decomposition reactions are taken into account. Inthis situation, the decomposition reactions form chains which link the largest moleculesto the atomic elements and propagate the zero concentration property.3.7. A global stability inequalityIn the following, we assume that the reaction network and the conservation simplexare such that there are no boundary equilibrium points.(H6) There are no boundary equilibrium points in the set X de�ned byX = (Y f +MR) \ [0;1)n \ fY; Xk2S Ykhk(0) < hf g: (3.35)Under this assumption, we obtain a global stability inequality provided that thetemperature is bounded.Proposition 3.15. Let a and b be positive constants such that a < T e < b. Thenthere exists � > 0 and � > 0 such that8� 2 f a � T � b g \ fY > 0 g \ fQ(� � �e) � � g �(ve)� �(�) � � �(�);where ve denotes the unique equilibrium point on � + (0;MR).This proposition is proved by using a compacity argument. We already knowfrom Proposition 3.11 that such an inequality holds near equilibrium points. We alsoknow that the dissipation rate �(�) is positive for Y > 0 when � is not an equilibriumpoint. As a consequence, we only need to investigate the behavior of the chemicaldissipation rate � near the boundary|with respect to zero mass fractions|of the setf a � T � b g \ fY > 0 g \ fQ(� � �e) � � g.Lemma 3.16. Consider the set f a � T � b g \ fY > 0 g \ fQ(� � �e) � � g wherea and b are positive constants such that a < T e < b. Then, there exists � > 0 suchthat the functional � is bounded from below by a positive constant near the zero massfraction boundary.Proof. Assume that � is small enough in such a way that there are no boundaryequilibrium points in the set Q(� � �e) � �. Consider then a boundary point (T b; Y b)such that Y b is nonpositive. We can introduce the sets S+, S0, R+, and R0, as inProposition 3.13. For Y in the neiborhood of Y b and Y positive, we now write� = 1RT �Xk2S0 gkmk(Yk bNk � Pk)� Xk2S+ gkmk!k�:We have �glmlPl � 0, glYl ! 0, and �gl ! +1, for l 2 S0, when Y ! Y b. Onthe other hand, the quantities glml!l, l 2 S+, remain bounded in the neiborhood ofY b. As a consequence, if there exists k 2 S0 with Pbk > 0, then � goes to +1 asY ! Y b since �gkmkPk ! +1. On the other hand, if Pbk = 0 for all k 2 S0, then22



the term �Pk2S0 gkmkPk is nonnegative|although it may be arbitrary large|if Yis su�ciently close to Y b, whereas the second term goes to� Xk2S+ gkmk!+kwhere !+ only involve the chemical reactions of R+ associated with the S+ mixture.This limit is then positive otherwise Y b would be a boundary equilibrium point fromProposition 3.6 applied to the submixture S+.Note that for 
ame problems, the local inequality of Proposition 3.11 only involvehigh temperatures and small characteristic times. However, the global inequality ofProposition 3.15 involve low temperatures and large characteristic times depending onthe lower bound a.4. TRANSPORT COEFFICIENTSIn this section, we specify the properties of transport coe�cients. These propertiesare deduced from previous work on di�usion matrices [Gio91] and from kinetic theoryinvestigations of polyatomic reactive gas mixtures [EG94].We �rst consider transport coe�cients for nonnegative mass fractions. Indeed,although solutions of the 
ame equations will be shown to have positive mass frac-tions, we need to consider the case of zero mass fractions in order to achieve existencetheorems. In particular, in the presence of zero mass fractions, the di�usion velocitiescannot be de�ned [Gio91].We then consider the more classical case of positive mass fractions. In this situa-tion, we establish a new fundamental inequality about di�usion matrices which showsthat the natural norm associated with multicomponent di�usion is a solution depen-dent weighted norm involving mass fractions at the denominator of the square of massfraction gradients.4.1. Mathematical assumptions on transport coe�cientsThe following properties of 
ux transport coe�cients are derived from previousstudies on di�usion matrices [Gio91] and kinetic theory investigations of polyatomicreactive gas mixtures [EG94]. In the appendix, we restate how these properties are alsoderived from Stefan-Maxwell-Boltzmann type equations.(H7) The 
ux di�usion coe�cients Ckl, k; l 2 S, the rescaled thermal di�usionratios e�k, k 2 S, and the thermal conductivity � are C1 functions of (T; Y )for T > 0 and Y � 0, Y 6= 0.(H8) The 
ux di�usion matrix C = (Ckl)k;l2S and the rescaled thermal difusionratios e� satisfy the mass constraints N(C) = RY , R(C) = U? and e� 2 
?.(H9) The thermal conductivity � is a positive function.23



(H10) For positive mass fractions, we de�ne the matrix D by D = (1=�)Y�1C whereY = diag(Y1; : : : ; Yn). In this situation, the matrixD = (Dkl)k;l2S is symmet-ric positive semi-de�nite and its nullspace is spanned by Y = (Y1; : : : ; Yn)?.In particular, D is positive de�nite over U? where U = (1; : : : ; 1)?.(H11) For nonnegative mass fractions, we de�ne S+ = f k 2 S; Yk > 0 g andS0 = f k 2 S; Yk = 0 g, and we denote by � the permunation matrixassociated with the reordering of S into (S+; S0). We then have the blockstructure �?C� = �C++ C+00 C00 �;and C00 is diagonal with positive entries. In addition, C++ is the 
uxdi�usion matrix of the mixture associated with S+ and de�ning D++ byD++ = (1=�)(Y+)�1C++, the matrix D++ is symmetric positive semide�niteand has nullspace RY + where Y + corresponds to the S+ mixture, that itY = �(Y +; 0). Similarly, D++ is positive de�nite over the subspace (U+)?where U+ 2 Rn+ , U+ = (1; : : : ; 1)?, and n+ is the number of elements of S+.Note that the matrix C is singular since CY = 0 and not symmetric in general.Pressure dependencies of transport coe�cients have not been written since p is constant.However, the only dependency is that D is inversely proportional to the pressure p sothat �D, C and � only depend on (T; Y ). As a consequence, properties (H7){(H11) areuniformly valid for arbitrary gas mixtures. We also establish in the Appendix that Dis always irreducible whereas C is irreducible if and only if Y > 0.Properties (H7){(H11) are more general than the assumptions considered in [GM98]where all mass fractions where assumed to be bounded away from zero. The situationswhere the di�usion process can be represented by a diagonal matrix have also beenidenti�ed in [Gio91] and we refer to [Gio91] [EG94] and to the Appendix for moredetails. From assumptions (H7){(H11), we now deduce various properties of transportcoe�cients and transport 
uxes.Lemma 4.1. For k; l 2 S, and k 6= l, the function Dkl admits a smooth extension toT > 0, and Y � 0, Y 6= 0. For k 2 S, the function Dkk admits a smooth extention tofY; Y � 0; Yk > 0 g, and explodes like 1=Yk as Yk ! 0. In addition, we have Dkk � 0,and Dkk = 0 if and only if Yl = 0 for l 6= k and Yk > 0.Proof. Consider a point Z such that Z � 0, Z 6= 0, and let Y be in the neighbor-hood of Z. When Zk > 0, we have Yk > 0 and from (H11) we obtain Dkl(T; Y ) =Ckl(T; Y )=��(T; Y )Yk�, so that Dkl(T; Y ) is smooth. Assume now that Z has at leasta component such that Zk = 0. We then consider Y > 0 in the neigborhood of Z andwe de�ne �(Y ) = Y � Ykek1� Yk ;where ek, k 2 S, is the canonical basis of Rn. We have of course �(Y ) � 0 and�(Y )k = 0. As a consequence, we obtain for k 6= lCkl(T; Y )�Ckl�T; �(Y )� = Ckl(T; Y ) =Z 10D@ZCkl�T; yY +(1�y)�(Y )�; Y ��(Y )E dy;24



since Ckl�T; �(Y )� = 0 for k 6= l. However, since Y � �(Y ) = Yk�ek � �(Y )� we nowobtain thatDkl(T; Y ) = Ckl(T; Y )�Yk = 1� Z 10 D@ZCkl�T; yY + (1� y)�(Y )�; ek � �(Y )E dy;so that Dkl(T; Y ) is a smooth function of (T; Y ) for T > 0 and Y � 0, Y 6= 0, keepingin mind that C and � are smooth.The smooth extension of Dkk to fY; Y � 0; Yk > 0 g is also obvious fromDkk = Ckk=�Yk. Moreover, the fact that Dkk explodes when Yk ! 0 is a directconsequence of Ckk > 0 for Yk = 0. Furthermore, for Yk > 0 we obtain from (H11)that Dkk � 0 since D++ is symmetric positive semi-de�nite. Finally, when Dkk = 0,we have e+k 2 N(D++) and since N(D++) = RY +, we deduce that Y + is reduced toone element and the conversely.Note that C and D admits generalized inverses which naturally arise in the frame-work of the kinetic theory of gases or when investigating Stefan-Maxwell-boltzmannequations as shown in the Appendix [Gio90] [Gio91]. We now de�ne the thermal di�u-sion coe�cients �k, k 2 S and the partial thermal conductivity b� in order to recoverthe more familiar expression (2.31){(2.32).Lemma 4.2. De�ne the thermal di�usion ratios �k, k 2 S, by�k = 
ke�k; k 2 S; (4.1)and the coe�cients �k, k 2 S, and b� by the expressions�k = RTp Xl2S e�lmlClk; (4.2)b� = �+ pT Xl2S �l�l: (4.3)Then the relations (2.31){(2.32) hold, �k, k 2 S, and b� are smooth functions for T > 0and Y � 0, Y 6= 0, and the partial thermal conductivity b� is positive. In addition,when Y is positive, we have �k =Xl2S Dkl�l: (4.4)Proof. The smoothness of �k, k 2 S, �k, k 2 S, and b� is a direct consequence ofthe de�nitions. From the properties of C and the symmety of D we also deduce thatYlCkl = YkClk, k; l 2 S. Indeed, when Yk and Yl are both positive, we can write thatCkl=Yk = �Dkl and Clk=Yl = �Dlk but D is symmetric by assumptions. On the otherhand, when Yk = 0 and Yl > 0, we have Ckl = 0 by assumptions so that YlCkl = YkClk,and the relation is trivial when Yk = Yl = 0. Now when Y is positive, we can writethat e�lClk = e�l�YlDlk so that�k = RTp Xl2S e�lml �YlDlk =Xl2S e�l
lDlk =Xl2S Dkl�l;which completes the proof. 25



4.2. The fundamental di�usion inequalityThe following inequality is essentially a consequence of [Gio91] and plays a funda-mental role in the analysis.Lemma 4.3. Consider a �xed temperature T . Then there exists a positive constant� such that8Y > 0 with hY; Ui = 1; 8x 2 U? h�Dx; xi � �hY�1x; xi; (4.5)where Y = diag(Y1; : : : ; Yn).Proof. Consider the quadratic form associated with the rescaled matrix( bDkk = Ckk; k 2 S;bDkl = �DklpYkYl; k; l 2 S; k 6= l:Then bD is a continuous function over Y � 0, hY; Ui = 1, from Lemma 4.1. Considernow the functional (Y; x)! h bD(T; Y )x; xi de�ned for Y � 0, hY; Ui = 1, kxk = 1, andPk2S xkpYk = 0. This continuous functional reaches a minimum over this compactset. Denoting by (Y m; xm) any point where the minimum is reached, by S+ the set ofpositive mass fraction species at Y m and by S0 the set of zero mass fraction species atY m, we then haveh bD(T; Y m)xm; xmi = Xk;l2S+ bDkl(T; Y m)xmk xml + Xk2S0Ckk(T; Y m)(xmk )2:Arguing by contradiction, we establish that h bD(T; Y m)xm; xmi is positive. First notethat both terms are non negative from (H11) and since bDkl = �DklpYkYl for k; l 2 S+.Since we know that Ckk, k 2 S0, are positive, h bD(T; Y m)xm; xmi = 0 implies thatxmk = 0, k 2 S0. On the other hand, we also have Pk2S+ xmk pYk = 0, and lettingzmk = xmk pYk, k 2 S+, we then obtainh bD(T; Y m)xm; xmi = Xk;l2S+ �Dklzmk zml ;and Pk2S+ zmk = 0. When S+ is reduced to one element, we then have xmk = 0, fork 2 S+ since there is only one term in the sum Pk2S+ zmk = 0. On the other hand,when there are more than two elements in S, we know that D is positive de�nite overU? which implies that zmk = 0, k 2 S+, and thus that xmk = 0, k 2 S+. Finally, wehave shown that xm = 0 which contradicts kxmk = 1 and the proof is complete.Note that the properties of �D|including the fundamental inequality|can alsobe rewritten in terms of the 
ux di�usion matrix C.Corrolary 4.4. The 
ux di�usion matrix C is such that CY is symmetric positivesemi-de�nite. Moreover, for any �xed temperature T , there exists a positive constant� such that8Y � 0; with hY; Ui = 1; 8x 2 Rn; with Yx 2 U?; hCYx; xi � �hYx; xi: (4.6)26



In addition, for any k 2 S, we have Ckk � 0, and Ckk = 0 if and only if Yl = 0 forl 6= k and Yk > 0.4.3. Uniform temperature scalingWe now focus on the global temperature dependency of transport coe�cients.More speci�cally, we assume a common temperature scaling for all transport coe�-cients. This common temperature scaling is suggested by the kinetic theory providedthat the same type of interaction potential is used for each pair of molecules.(H12) There exists a positive function '(T ) de�ned for T > 0 such that the rescaledproperties D0(T; Y ) = �D='(T ), C0(T; Y ) = C='(T ), �0(T; Y ) = �='(T ),and e�0 = e� admit a continuous extension to T 2 [0;1], Y � 0, Y 6= 0,satisfying (H8){(H11).Note that ' = 1 is generally used in mathematics whereas various functions 'are suggested by the kinetic theory of gases, depending on the interaction potentialsbetween pairs of molecules. For a rigid sphere interaction potential, we have for instance' = T 1=2. For point centers of repulsion, we have ' = T (��4)=2� where � varies from � =4|Maxwell molecules|to in�nity and the temperature dependence varies respectivelybetwen ' = 1 and ' = T 1=2 [FK72]. Small values of � corresponds to soft moleculeswhereas large values of � corresponds to hard molecules, and for � ! 1 we recoverthe hard sphere model. For Lennard-Jones or Stockmayer potentials the existence of 'is a consequence of the Mason and Monchick tables for collision integral ratios [FK72].In addition, from de�nitions (4.2) and (4.3) the quantities b�='(T ) and ��='(T ) alsoadmits a continuous extension. By a straightforward adaptation of Lemma 4.3 weobtain the following fundamental result.Corrolary 4.5. There exists a positive constant � such that8T > 0; 8Y > 0; hY; Ui = 1; 8x 2 U? h�Dx; xi � � '(T ) hY�1x; xi: (4.7)
4.4. The matrix LThe transport 
uxes � are naturally expressed in terms of the gradients of thestate variables T and Y . In order to manipulate the conservation equations, we needto express � in terms of the gradients of the conservative variables h and Y [GM98].De�nition 4.6. De�ne the matrix L byL = � 1 bh1; : : : ;bhn0 I �� �=cp 0C�=cpT C dY 
 �� 1 �h1; : : : ;�hn0 I � ; (4.8)where bhk = hk + RT e�k=mk, k 2 S. Then we have� = �L�0; (4.9)27



and L is such that R(L) = U?, where U = (0; U)?, and N(L) = R�.Proof. A straightforward calculation directly yields the expression of L and the identity� = �L�0. From this expresion, the relationdY 
 = 1hY; Ui�I � X
UhY; Ui� Awhere X = (X1; : : : ; Xn)?, and the identity hY; Ui = hX;Ui, we then obtain thatR(L) = U?, and N(L) = R�. Indeed, we have C(dY 
)x = 0 if and only if (dY 
)x = 0since R(dY 
) = U? and N(C) \ U? = f0g. On the other hand, thanks to AY = X,we have (dY 
)x = 0 if and only if Ax 2 RX, that is, if and only if x 2 RY .The following proposition is a direct consequence of classical results concerninggeneralized inverses with prescribed range and nullspace [BG74] [EG94] [EG97].Proposition 4.7. Assume that T > 0 and Y � 0, Y 6= 0. Then there exists a uniquematrix L] such that LL]L = L, L]LL] = L], N(L]) = N(L) and R(L]) = R(L). Thematrix L] is a smooth function of T > 0 and Y � 0, Y 6= 0, and LL] = L]L is theoblique projector onto R(L) parallel to N(L).Finally, we investigate how the di�usion 
ux Fk of the kth species behaves whenYk goes to zero. A straightforward calculation indeed yields the following result.Lemma 4.8. The di�usion 
ux Fk of the kth species can we written in the formFk = �dkY 0k � Yk�k; (4.10)where dk = CkkAkkhY; Ui ; (4.11)and�k = Ckkmk �Xl2S Ylml ��2Xl2Sl6=k X 0lml + Ckkmk e�k�Xl2S Ylml ��1T 0T +Xl2Sl6=k �Dkl�
0l + 
le�l(T 0=T )�;(4.12)so that the nondiagonal part of the multicomponent 
ux Fk vanishes for Yk = 0.Moreover we always have dk � 0, and dk = 0 if and only if Yl = 0 for l 6= k and Yk > 0.In particular, whenever hY; Ui = 1, dk is positive and bounded away from zero when0 � Yk � � for any � < 1.4.5. The entropy conservation equationIn this section, we establish the entropy conservation equation which plays a fun-damental role in the analysis. The existence of an entropy function is an importantproperty of the system [GM98] and will often be used in order to obtain a priori esti-mates. 28



Lemma 4.9. Assume that (T; Y ) is a regular solution of the 
ame equations andthat T and Y are positive. Then the entropy function �(h; Y ) = s(T; Y ) satis�es theequation c �0 + h@��; �i0 = �; (4.13)where the dissipation rate � is given by� = �(T 0=T )2 + pT Xk;l2SDkl�
0k + �k(T 0=T )� �
0l + �l(T 0=T )��Xk2S gkmk!kT : (4.14)Proof. We have �0 = h@��; �0i so that from the conservation equations we obtainc �0 = h@��;��0 + wi = �h@��; �i0 + �;where � is de�ned by� = 
(@��)0; ��+ h@��;wi = 
(@2��)�0; ��+ h@��;wi:We now obtain that h@��;wi = R� is the entropy production rate due to chemistryand that 
(@2��)�0; �� = 
(@��)0; �� = �� 1T �0q �Xk2S�gkT �0Fk;since @h� = (1=T ) and @Yk� = �gk=T from Lemma 3.3. Using�gkT �0 = �hkT 2 + Rmk 
0k
k ;we obtain after a little algebra
(@2��)�0; �� = � (q �Pk2S hkFk)T 0T 2 �Xk2S Rmk 
0k
kFk;which can be rewritten, by using the expression (2.28) of the heat 
ux, in the form
(@2��)�0; �� = ��T 0 � RTPk2S(e�k=mk)Fk�T 0T 2 �Xk2S Rmk 
0k
kFk:This yields 
(@2��)�0; �� = �(T 0=T )2 �Xk2S Rmk 
0k + �k(T 0=T )
k Fk;and �nally
(@2��)�0; �� = �(T 0=T )2 + pT Xk2SDkl�
0k + �k(T 0=T )��
0l + �l(T 0=T )�;and the proof is complete. 29



Note that Equation (4.13) is only valid when the mass fractions Yk, k 2 S, arepositive. Since h(@2��)�0; �i is the nonreactive part of the dissipation rate, the hessianmatrix may also be seen as a metric which correlates the 
ux � and the gradient �0,but this metric is singular for zero mass fractions. The entropy equation also showsthat the natural norm for multicomponent di�usion is not the H1 Sobolev norm butinvolves mass fractions at the denominator from (4.7).5. FIRST PROPERTIESIn this section, we establish that each solution of the anchored 
ame problem canbe extended uniquely into a solution on the full line satisfying (2.38). Conversely, weestablish that the reduction to [0;1) of any solution on (�1;1) is a solution of theanchored 
ame problem.5.1. PreliminariesA triplet (T; Y; c) such that T and Y are C2[0;1), such that T > 0, Y � 0,Y 6= 0, and c > 0, and which satis�es pointwise the governing equations and boundaryconditions (2.35){(2.37), will be said to be a solution of the anchored 
ame prob-lem. Similarly, a triplet (T; Y; c) such that T and Y are C2[0;1) \ C2[�1; 0] andC1(�1;1), such that T > 0, Y � 0, Y 6= 0, and c > 0, and which satis�es pointwisethe governing equations and boundary conditions (2.35) (2.38) and (2.37), will be saidto be a solution on the full line.We �rst establish some a priori estimates for any solution of the anchored 
ameproblem which will be further needed.Lemma 5.1. Let (T; Y; c) be a solution of the anchored 
ame problem. Then the massfractions are positive Y > 0 and sum up to unity hU; Y i = 1.Proof. Let (T; Y; c) be a solution of the anchored 
ame problem. We �rst deduce fromthe species equations that chU; Y i0 = 0 since R(C) = U? and M! 2 U?. This showsthat hU; Y i is constant, and this constant is equal to unity since the boundary condition(2.36) implies hU; Y i = hU; Y fi = 1.Aguing by contradiction, we now establish that Y (0) > 0. We assume that thereexists k 2 S such that Yk(0) = 0. Then, using Lemma 4.10 and the boundary conditionc(Yk(0)� Y fk ) + Fk(0) = 0, we deduce thatY 0k(0) = � cY fkdk(0) :If Y fk > 0, then Y is negative on an interval of the form (0; �) with � > 0, whichcontradicts the assumptions that (T; Y; c) is a solution of the anchored 
ame problem.Hence, if Yk(0) = 0, we must have Y fk = 0 and consequently we have Y 0k(0) = 0. Byexpanding the derivative F 0k in (2.1) and then letting x = 0, we further obtain thatdkY 00k = �mkPk;30



since Nk = 0 for Yk = 0. If Pk > 0 then Y 00k (0) < 0 which is imposible since Y isassumed to be a solution of the anchored 
ame problem. Hence we have Pk = 0 atx = 0 and Y 00k (0) = 0.We now introduce the set I = f k 2 S; Yk(0) = 0 g and from the precedingdiscussion we know that8k 2 I; Yk(0) = 0; Y 0k(0) = 0; Y 00k (0) = 0; Pk(0) = 0: (5.1)As a consequence, any reaction creating a species Sk with k 2 I needs at least onespecies Si with i 2 I as a reactant, otherwise one would get a positive production termPk. This shows that the mass fractions Yk, k 2 I, are factorized in the productionterms !l, l 2 I. Now the mass fractions Yk, k 2 I, are solutions of the systemcY 0k = �dk(x)Y 0k + Yk�k(x)�0 +mk!k; k 2 I;where dk and �k are de�ned in Lemma 4.10, and the mass fractions vanish at x = 0with their �rst derivatives. However, this system has a locally unique solution by virtueof the Cauchy-Lipchitz theorem. Since this system also admits the trivial solution,we conclude that locally, we have Yk(x) = 0, for x 2 [0; �], and k 2 I. An easyargument then yields that Yk(x) = 0, for x 2 [0;1), and k 2 I, contradicting thatYk(1) = Y ek > 0.We now have to show that Y > 0 over (0;1). Arguing by contradiction, assumethat there exists a point x0 > 0 and k 2 S such that Yk(x0) = 0. We may also assumethat x0 is the smallest point where a species vanishes. We then have Y 0k(x0) � 0by construction. If Y 0k(x0) < 0, we obtain a contradiction with the fact that Y isnonnegative. On the other hand, if Y 0k(x0) = 0, we can then argue as above and showthat Yk is zero in the neiborhood of x0, contradicting the de�nition of x0 and the proofis complete.5.2. Reduction to a problem on [0;1)Proposition 5.2. Let (T; Y; c) be a solution on the full line. Then we havec��(x)� �f�+ �(x) = 0; x � 0; (5.2)and the reduction of (T; Y; c) to [0;1) is a solution of the anchored 
ame prolem.Proof. From the governing equations we have hY 0; Ui = 0 so that hY; Ui is a constantand this constant is unity from hY f ; Ui = 1. From the governing equations, the quantityc�+� = c��L�0 is a constant over (�1; 0], say c��L�0 = u. Since �0 2 U? we can writethat �0 = L](c� � u). This shows that �0 admits a limit as x! �1 since �(�1) = �fand this limit can only be zero. As a consequence, we must have u = c �f and weconclude that c� + � = c�f over (1; 0] so that the restriction to [0;1) of (T; Y; c) is asolution of the anchored 
ame problem.5.3. Extention to (�1; 0) 31



In this section, we establish that any solution of the anchored 
ame problem canbe extended over (�1; 0). However, we will further need to extend any solution ob-tained on bounded domain for a priori estimates. As a consequence, we investigate theextension starting from any positive species at the origin and will apply this result toboth situations.Proposition 5.3. Let Y 0 > 0 and c > 0 be given such that hY 0; Ui = 1, and let�0 = (h(T i; Y 0); Y 0). Then there exists a unique solution (T; Y ) to the 
ame equationsover (�1; 0] such that �(0) = �0 and �(�1) = �f . Furthermore, this solution satis�es(5.2) and there exist are positive constants a and b such that 0 < a � T � b. Inaddition, the mass fraction are positive, satisfy hY; Ui = 1, and the integral over (�1; 0]of the dissipation rate � is �nite and given byZ 0�1� dx = c��(0)� �f � 
@��(0); �(0)� �f��: (5.3)Proof. We have established in the proof of Proposition 5.2 that any solution of the
ame equations such that (2.38) holds must satisfy (5.2). As a consequence, any suchsolution satis�es the ordinary di�erential equationz0 = cL](z � �f); (5.4)with initial value �(0) = �0. Now such a solution locally exists and is unique from theCauchy-Lipchitz theorem so that we only have to extend this solution over (�1; 0].Consider such a a solution over [x0; 0] and, locally, the species are positive. Itis easily checked that hY; Ui = 1 so that the mass fractions are bounded. From thegovening equations, we obtain, after a little algebra, thatXk2S Y fk (hk � hfk)� �T 0 + RTXk2S e�kmk Y fk = 0:Consider any x1 where T reaches its minimum over [x0; 0]. If T (x1) � T f then we musteither have T 0(x1) = 0 when x1 2 (x0; 0) or T 0(x1) � 0 when x0 = x1, x1 = 0 beingexcluded since T f < T i. As a consequence, if T (x1) � T f thenXk2S Y fk�hk�T (x1)�� hk�T f��+ RT (x1)Xk2S e�kmk Y fk � 0:Keeping in mind that T (x1) � T f , this yields thatcp�T (x1)� T f�+ T (x1)� � 0;where � � 0 is such that RXk2S je�kjmk Y fk � �:We have thus shown that T � a = cp T fcp + �;32



so that T is uniformly bounded from below.This method cannot be used, however, in order to derive an upper bound for T ,unless the thermal di�usion factors are small quantities. In particular, when e� = 0, oneeasily shows that T f � T � T i. For the general case e� 6= 0, we integrate the entropyconservation equation over [x; 0]c(�(0)� �) + h@��; �i(0)� h@��; �i = Z 0x � du;so that from c(� � �f) + � = 0 we obtain thatc �� � �f � h@��; � � �fi� = c ��(0)� �f � h@��(0); �(0)� �fi�� Z 0x � du: (5.5)As a consequence, the functional � � �f � h@��; � � �fi is increasing over [x0; 0] andnonnegative by concavity. After a little algebra, we easily evaluate this functional anddeduce thathfT �Xk2S Y fk hk(T )T +Xk2S Y fk sk(T; Y ) � �(0)� h@��(0); �(0)� �fi:Using now the lower bound for T and the expression (2.15) we get thatXk2S Y fk�� Rmk logXk + Z Ta cpk(t)t dt� � b;where b is a positive constant wich depends only on the data and on �0. This impliesthat T � b over [x0; 0] where b is independent of x0, and that Yk is bounded away from0 when k is such that Y fk > 0.We now consider a maximal solution de�ned on (x1; 0] and we argue by contradic-tion by assuming that x1 is �nite. In this situation, from the preceding estimates, andthe smoothness of the coe�cients, �0 remain �nite in the neighborhood of x1 so thatthe limit �(x1) exists and also �0(x1). As a consequence, if x1 is �nite, we have eitherY > 0 and the solution can be extended, contradicting the de�nition of x1, or thereexists k 2 S such that Yk(x1) = 0. Since 8x 2 (x1; 0], 8k 2 S, Yk(x) > 0, we haveY 0k(x1) � 0 by construction and from (5.2) and (4.10)Y 0k(x1) = �cY fk�dk :When Y fk > 0, this yields Y 0k(x1) < 0 and we have obtained a contradiction. On theother hand, if Y fk = 0, this yields that Y 0k(x1) = 0 and thus that Yk = 0 by the CauchyLipchitz theorem applied to z = Yk solution ofcz = dk(x)z0 + z�k(x);where dk and �k are de�ned in Lemma 4.10. We then obtain Yk = 0 in the neighborhoodof x1, contradicting the de�nition of x1. As a consequence, the solution can be extendedover the half line (�1; 0] and the temperature and mass fractions remain positive.33



From the identity (5.5) we also obtain that the integral of the dissipation rate �remain �nite. Using now the estimate h�; �i � �� where � is a positive constant, and� = �c(� � �f), we obtain that � � �f 2 H1(�1; 0) and thus �(�1) = �f . This nowshow that c��(0)� �f � h@��(0); �(0)� �fi� = Z 0�1� dx;and that the upper bound for T is �nally controled by the data and the integral of thereduced dissipation rate �=c.We can now apply this result to any solution of the anchored 
ame problem sincewe know that Y (0) > 0.Corrolary 5.4. Let (T; Y; c) be a solution of the anchored 
ame problem. Then thissolution has a unique extension over (�1; 0) such that (2.36) holds. Moreover, thissolution satis�es (5.2) and the mass fractions are positive over (�1; 0] and the identity(5.3) holds.6. EXISTENCE ON A BOUNDED DOMAINIn this section, we establish an existence theorem on a bounded domain [0; a].In the next section, we will let a ! 1 and obtain a solution of the anchored 
ameproblem.6.1. PreliminariesFor technical reasons, we need to extend the domain of de�nition of the equationscoe�cients. To this purpose, we introduce the de�nitioneY = 8<:Y +; if hY; Ui � 1,Y + + 1� hY; Uin U; if hY; Ui � 1. (6.1)We note that we have eY � 0 and heY ; Ui � 1 for any Y 2 Rn. In addition, wheneverhY; Ui = 1, we have eY = Y + so that both properties Y � 0 and hY; Ui = 1 imply thateY = Y . For a �xed point formulation, the transport coe�cients, the thermodynamicproperties and the chemical production rates can be taken to be functions of (T; eY ), andare then de�ned for T > 0 and any Y 2 Rn. In order to avoid too complex notation,we will denote by e the function  (T; eY ) associated with any function  (T; Y ).In order to obtain a suitable �xed point formulation, it is preferable to control thetemperature and thus to use (T; Y; c) as an unknown, rather than using the speci�centhalpy h. However, the enthalpy equation is simpler than the temperature equationand can be integrated once, making use of the 
ux boundary conditions. In order tokeep both advantages, we will solve the equations in the form�0 = L]�c(� � �f)� Z x0 w(u) du�;34



with h0 replaced by cpT 0+Pk2S hk(T )Y 0k and h by R T0 cpdu+Pk2S h0kYk. That is, wewill solve the problem in the form�cpT 0 +Xk2S hk(T )Y 0k; Y 0�? = L]�c�Z T0 cpdx+Xk2S h0kYk; Y �? � c�f � Z x0 w(u) du�;with the backward initial conditions �(a) = �e with the extra relation T (0) = T i usedas an equation for the eigenvalue c.In order to establish the existence of a solution, we will use the Leary-Schaudertopological degree theory and the homotopy invariance of the degree. We will �rsteliminate the chemistry in a �rst homotopy path, and then simplify thermodynamicproperties and transport 
uxes along a second homotopy path. Evaluation of theresulting degree will conclude the existence proof.6.2. A �xed point formulationWe consider the Banach spaceB = �C1[0; a]�n+1 � R ; (6.2)and the open set O � B O = f (T; Y; c) 2 B; T > 0; c > 0 g: (6.3)We introduce the operator K� : O �! B;de�ned by K� (T; Y; c) = �t; y; c+ t(0)� T i�; (6.4)where (t; y) are solutions of the system�ecpt0 +Xk2S hky0k; y0�? = eL]�c�Z t0 ecpdx+Xk2S h0kyl; y�? � c�f � � Z x0 ew(u) du�; (6.5)with the backward initial conditionst(a) = T e; y(a) = Y e: (6.6)Note that nonlinearities are taken as functions of (T; eY ) in the homotopy path andthat for � = 0 the chemistry source terms vanish. The extra left boundary conditionsT (0) = T i is also used as an equation for the eigenvalue c.Proposition 6.1. The operator K� from O to B is well de�ned.Proof. Consider the backward ordinary di�erential equation with initial condition(t; y)(a) = (T e; Y e). This system of ordinary di�erential equations admits a unique35



solution from the Cauchy-Lipchitz theorem, keeping in mind that the right member isbounded by an a�ne function of (t; y) [Bou76].We also have the following property which allows us to use the homotopy invarianceof the degree.Lemma 6.2. Let B be a closed bounded set in O and let K : [0; 1]� B ! B be themap de�ned by K��; (T; Y; c)� = K� (T; Y; c). Then K is a compact map.Proof. We establish from the de�nition of (t; y) that for ��; (T; Y; c)� 2 [0; 1] � B,t, y, t0, and y0 are uniformly bounded and that t0 and y0 are uniformly Lipchitzian.This implies that the range of K is relatively compact and that K is continuous byuniqueness of the solution of (6.5){(6.6).We now introduce the open set 
 de�ned by
 = f (T; Y; c) 2 O; k(T; Y )kC1[0;a] < �; � < T < �; � < c < � g; (6.7)where � and � are positive constants.Theorem 6.3. There exists constants � and � such that for all � 2 [0; 1] and a � 1,the Leray-Schauder degree d(I �K� ;
; 0) is well de�ned.In order to establish this theorem, we have to show that for � small enough and� large enough we have 8� 2 [0; 1]; 0 62 (I �K� )(@
): (6.8)This will be obtained in the next section by estimating �xed points of K� .6.3. Existence of the degreeWe estimate in this Section the �xed points (T; Y; c) of K� for � 2 [0; 1]. Byde�nition, we have T > 0, c > 0, and (T; Y; c) = (t; y; c + t(0) � T i), so that theequations obtained from (6.5) with t = T and y = Y hold and T (0) = T i. A prioriestimates are successively obtained in the following lemmas.Lemma 6.4. Let (T; Y; c) be a �xed point of K� . Then the mass fractions are positiveY > 0 and sum up to unity hU; Y i = 1.Proof. We �rst deduce from the species equations (6.5) that chU; Y i0 = 0 since wehave R(L]) = U?. As a consequence, hU; Y i is a constant which is unity from (6.6),and this shows that eY = Y +Step 1. We �rst establish that Y (0) � 0. Arguing by contradiction, assume thatthere exists k 2 S such that Yk(0) < 0. Then from the species equations written atx = 0 we have c(Yk(0) � �fk) �Pl2S Lkl�(T (0); Y +(0)�Y 0l (0) = 0, and we also haveY +k (0) = 0, so that from Lemma 4.10 we deduce thatY 0k(0) = cdk(0)(Yk(0)� Y fk ) < 0:36



Then Yk is negative over an interval of the form (0; �) with � > 0. Over this interval(0; �) we now have dkY 0k = c(Yk � Y fk )� � Z x0 mk ePk du;since e!k = ePk, for eYk = Y +k = 0. This shows that Y 0k is negative and Yk is decreasing.By using a forward shooting argument, we deduce that Yk remains negative, contra-dicting the backward initial condition Yk(a) = Y ek > 0.Step 2. We now claim that Y � 0. Aguing by contradiction, assume that thereexists a point x1 and a species k 2 S such that Yk(x1) < 0. From the precedingdiscussion and since Y (a) = Y e, we necessarily have x1 2 (0; a). De�ne nowx0 = supf t 2 (0; x1]; Yk(t) = 0 g:This set is nonempty since Yk(0) � 0 and Yk(x1) < 0. In addition, x0 is di�erentfrom x1 since Yk is Lipchitzian. Indeed, we have jYk(x1)j � M(x1 � t) for any t < x1such that Yk(t) = 0 where M is a Lipchitz constant for Yk. Since x0 6= x1, we nowconsider the interval (x0; x1) where Yk is negative since Yk(x1) < 0 and Yk cannotchange of sign over (x0; x1) by construction. There exists �x 2 (x0; x1) with Y 0k(�x) < 0and a forward shooting argument now shows that Y 0k and Yk are negative over [�x; a],an obvious contradiction with Yk(a) = Y ek .Step 3. We now show that Y (0) > 0. Arguing by contradiction, assume thatYk(0) = 0 for some k 2 S. Then from the species equation, we obtain thatY 0k(0) = cdk(0)(Yk(0)� Y fk ) � 0;and since Y � 0, we cannot have Y 0k(0) < 0 so that necessarily Y fk = 0. From thepreceding steps, we know that hY; Ui = 1 and that Y � 0, so that eY = Y and from(6.5) the solution is twice di�erentiable. Deriving the species relations and substitutingx = 0 we deduce that dk(0)Y 00k (0) = ��mkPk(0) � 0:Since Y � 0, Y 00k (0) cannot be negative so that necessarily Pk(0) = 0. We now introducethe set I = f k 2 S; Yk(0) = 0 g and from the preceding discussion we have8k 2 I; Yk(0) = 0; Y 0k(0) = 0; Y 00k (0) = 0; �Pk(0) = 0: (6.9)Now if � > 0, any reaction creating a species Sk, with k 2 I, needs at least one speciesSi with i 2 I as a reactant, otherwise one would get a positive production term. Thisshows that the mass fractions Yk, k 2 I, are factorized in the production terms !l,l 2 I. Now the mass fractions Yk, k 2 I, are solution of the systemcY 0k = �dk(x)Y 0k + Yk�k(x)�0 + �mk!k;where dk and �k are de�ned in Lemma 4.10. However, this system has a locallyunique solution from the Cauchy-Lipchitz theorem, but also admits the trivial solution.37



A shooting argument now shows that Yk = 0 over [0; a] for any k 2 I, an obviouscontradiction.Step 4. We �nally establish that Y > 0. Still arguing by contradiction, weconsider the �rst point x0 such that there exists l 2 [1; n] with Yl(x0) = 0. Of coursewe have x0 6= a since Y el > 0. At this point, since Yl > 0 on [0; x0), we have Y 0l (x0) � 0.We cannot have Y 0l (x0) < 0 since Y � 0 so that Y 0l (x0) = 0 and Yl(x0) = 0. We can nowproceed as in the preceding step to conclude that Yl is locally zero which contradictsthe de�nition of x0 and the proof is complete.Lemma 6.5. Let (T; Y; c) be a �xed point of K� and assume that is has been extendedover (�1; 0) by using Proposition 5.3. We know from Lemma 6.4 and Proposition5.3 that the species are positive so that the entropy and the dissipation rate are wellde�ned. We then have the entropic estimatesZ a�1� dx = c(�e � �f); (6.10)where� = ��T 0T �2 + pT Xk;l2SDkl�
0k + �k(T 0=T )� �
0l + �l(T 0=T )�� �Xk2S gkmk!kT ; (6.11)and where we use the notation !(x) = 0 for x < 0.Proof. Since the species are positive and we may thus use the entropy governingequation c �0 + h@��; �i0 = �;where the dissipation rates � is given by (6.11). We also know from Proposition 5.3 thatthe integral of � over (�1; 0) is given by (5.3). Integrating the entropy conservationequation over [0; a] thus yieldsc(�e � �f) + 
(@��)e; �(a)� = Z a�1� dx; (6.12)where (@��)e = (@��)(�e).On the other hand, we know that (@Y �)e 2 (MR)? so that (@��)e 2 (0;MR)?.Multiplying the species conservation equations by (@��)e and integrating over (�1; a]then yields c
(@��)e; �e � �f�+ 
(@��)e; �(a)� = 0:However, �e � �f 2 (0;MR)? since Y e � Y f 2 MR from element conservation andsince he = hf . As a consequence, we have 
(@��)e; �e � �f� = 0 and 
(@��)e; �(a)� = 0and the proof is complete from (6.12).Lemma 6.6. Let (T; Y; c) be a �xed point of K� . Then there exists positive constants� and � independent of a such that � < T < �.38



Proof. We start from the entropy conservation equationc �0 + h@��; �i0 = �;that we multiply by h@��; �i and integrate over [0; x]. This yields the identity12 h@��; �i2 = 12h@��; �i2(0) + Z x0 �� h@��; �i � c�0h@��; �i� du:The �rst integral term can be bounded byZ x0 � h@��; �i du � Z x0 �c+ 1c h@��; �i2�� du � bc2 + 1c Z x0 h@��; �i2� du:On the other hand, the second integral term can be estimated with���0h@��; �i�� = ���cpT 0T +Xk2S skY 0k��� �����T 0T +Xk2S skFk���;which yields, by using the de�nition of the species entropies sk, k 2 S, that���0h@��; �i�� � b '(T )1=2���T 0T ��+Xk2S�1 + j logYkj+ j logT j�jY 0kj�'(T )�1=2����T 0T ��+Xk2S�1 + j logYkj+ j logT j�jFkj�:We now use the entropic estimates (6.10) and Schwartz inequality in order to estimatethe integral of ���0h@��; �i��. By using Ykj logYkj2 � 1 for 0 < Yk � 1 and theexpressions (4.10) for the multicomponent 
uxes, we deduce thatZ x0 ���0h@��; �i�� du � b�c+ Z x0 j logT j2 � du�:On the other hand, by integrating the entropy conservation equation over [0; x], wehave c(� � �f) + h@��; �i = Z x�1� du;which implies that c j logT j � bc+ ��h@��; �i��: (6.13)since the speci�c heats are bounded by positive constants. Combining these resultsyields that Z x0 ���0h@��; �i�� du � bc+ bc2 Z x0 h@��; �i2� du;so that h@��; �i2 � bc2 + bc Z x0 h@��; �i2 � du:39



From Gronwald Lemma, we obtain h@��; �i2 � bc2;and using (6.13) we conclude that j logT j � b;and the proof is complete.It is the �rst time that an upper bound for the temperature is obtained in a 
amewith nontrivial transport. Note also that the natural entropy production weightednorm has been used in the proof of Lemma 6.6.We now estimate the eigenvalue c of the 
ame problem. In the following lemma,we obtain an upper bound independent of a and a lower bound which depends on a.The existence of a lower bound independent of a will only be needed when passing tothe limit a!1 and is postponed to Section 7.Lemma 6.7. Let (T; Y; c) be a �xed point of K� and assume that a � 1. Then thereexists positive constants � and � such that � < c < � and � is independent of a.Proof. When thermal di�usion is not included, there exists a simple way to get anupper bound for c. Indeed, using the identity c(� � �f) + � = � R x0 wdu, we havecXk2S Y fk (hk � hfk)� �T 0 = �Xk2S hk Z x0 mk!kdu:Assume now that a � 1, and denote by b0 an upper bound|independent of a|of thesum in the right member for x 2 [0; 1]. Then either c cp(T i � T f) � b0, and there isnothing to prove, or c cp(T i � T f) � b0 and a shooting argument shows that T � T iover [0; 1]. In this situation, and we may write the above equality at a point x 2 [0; 1]such that T 0(x) = T (1)� T (0) to obtain an upper bound for c.When thermal di�usion is included, we �rst note that for x � 0c(� � �f) + h@��; �i = Z x�1� du � Z x0 � du = c��(0)� �f � 
@��(0); �(0)� �f��:Since T (0) = T i > T f , we deduce that there exists � > 0 such that for any x � 0� � �f + 1c h@��; �i � � > 0:In addition, we have h�; �i � b� and h@��; �i2 � b� since the temperature is uniformlybounded and since (log 
)2
 � 1 for 
 � 1. As a consequence, we haveZ 10 �h�; �i+ h@��; �i2� dx � bc40



and from the governing equations c(� � �f) + � = R x0 wdu we �nally obtainZ 10 �

� � �f � �c Z x0 w du

2 + �� 1c h@��; �i��2� dx � bc:We now use the uniform continuity of � over the compact set Y � 0, hY; Ui = 1, anda � T � b. More speci�cally, there exists � such that k�1 � �0k < � implies thatk�(�1)� �(�0)k < �=2.Now for x 2 (0; 1) we have the following alternative. Either k�� �fk < � and thenk�(�)� �(�f)k < �=2 and the entropic estimates yieldsj 1c h@��; �i�� � �=2:Or we have k� � �fk � � so that for �wc � 12�;where �w is a uniform bound of k R 10 w dxk, we then havek� � �f � �c Z x0 w duk � 12�:We have thus shown that c � 2�w=� implies thatc 14 inf��2; �2� � b;so that c is bounded from above.For the lower bound, we remark thatjT (a)� T (0)j � Z a0 jT 0(x)j dx � paZ a0 jT 0(x)j2 dx;and we also have jT 0j2 � b� uniformy from the temperature bounds. As a consequence,we obtain that T e � T i � bpaZ a0 � dx � bcpa;and this yields a lower bound for c which depends on a.We now estimate the derivatives of �xed points of K� .Lemma 6.8. Let (T; Y; c) be a �xed point of K� and assume that a � 1. Then thereexists a positive constant � independent of a such that k(T; Y )kC3[0;a] < � and suchthat k(T 0; Y 0)kH2[0;a] < �Proof. We use the variable � for convenience and from the entropic estimate and theupper bounds derived in the previous lemmas we obtain thatZ a�1 k�0k2 dx � �: (6.14)41



On the other hand, we may use the expression (3.31) of the dissipation rate� =Xi2R bKi�hM�di ; �i � hM�ri ; �i� �exphM�di ; �i � exphM�ri ; �i�:Since 
k � 1, k 2 S, we know from (2.20) that h�;M�di i and h�;M�ri i are boundedfrom above. As a consequence, there exists b such that��exph�;M�di i � exph�;M�ri i�� � b��h�;M�di i � h�;M�ri i��;and, using now the positivity of bKi, i 2 R, and the uniform estimates for the temper-ature, we conclude that Xi2R r2i � b�;so that �nally, using the entropic estimates, there exists b such that� Z a0 kwk2 dx � b:From the governing equations c�0 + �0 = �w, where w = 0 for x < 0, and from0 � � � 1, we now deduce that Z a�1 k�0k2 dx � �;and from Sobolev injection applied to � = �L�0 we obtain that k�k � � uniformly over(�1; a] and from �0 = �L]� we further obtain that k�0k � � uniformly over (�1; a].Finally, from the governing equations, we deduce that k�0k is uniformly bounded andupon expanding the derivatives we conclude that k�00k is also uniformly bounded. TheL1 estimates for �00 and �000 and the H2[0; a] estimates of derivatives are similar.6.4. Calculation of the degreeFrom the homotopy invariance of the degree, we haved(I � K1;
; 0) = d(I � K0;
; 0); (6.15)and the map K0 no longer involves chemistry source terms. In order to evaluate thisdegree, we need a second homotopy in order to simplify transport properties and ther-modynamics.We introduce the operator H� : O �! B;de�ned by H� (T; Y; c) = �t; y; c+ t(0)� T i�; (6.16)42



where (t; y) are solutions of the system�ec �p t0 +Xk2S h�k y0k; y0�? = ( eL� )]�c�Z t0ec �p dx+Xk2S h0kyk; y�? � c �f;��; (6.17)with the initial conditions t(a) = T e; y(a) = Y e: (6.18)In these expressions, we have used the notationec �pk = �ecpk + (1� �)cp;e�� = �e�+ (1� �)�;eC� = � eC + (1� �)D�IhY; Ui � Y
U�;e��k = � e�k;m�k = �mk + (1� �)m0;�f;� = �Xk2S Y fk �h0k + Z T f0 ec �pkdx�; Y f�?;where cp, �, D, and m0 are �xed positive constants such that�cpD = 1;and where eL� is taken as in De�nition 4.8 in terms of eC� , e�� , e�� , ec �p , and m� .The idea behind this new homotopy is to obtain trivial thermodynamics and trivialtransport 
uxes for � = 0. One could also simultaneously modify the chemistry sourceterms, thermodynamic properties and transport properties in a single homotopy. How-ever, it requires changing the equilibrium temperature boundary condition|which de-pends on thermodynamics|and simultaneously to change the cold temperature bound-ary conditions, in order to prevent any temperature crossings associated with modi�edequilibrium temperatures. Using two distinct homotopies somewhat simpli�es the pre-sentation.Proposition 6.9. The operatorH� : O ! B is well posed and the degree d(I�H� ;
; 0)is well de�ned for � 2 [0; 1] and a � 1. Moreover, for any closed bounded set B in O,the map H : [0; 1]� B ! B de�ned by H��; (T; Y; c)� = H� (T; Y; c), is compact.Proof. It is exactly similar to the preceding case up to minor modi�cations. Forinstance, the entropic estimates now readsZ a�1� dx = c��(�e;�)� �(�f;�)� 
@��(�e;�); �e;� � �f;���;43



where �e;� = �Xk2S Y ek �h0k + Z T e0 ec �pkdx�; Y e�?;since �e;� does not anymore coincide with the maximum of � on the conservationsimplex, the speci�c heats being modi�ed along the homotopy path.From the homotopy invariance of the degree, we now obtain thatd(I � K1;
; 0) = d(I �H0;
; 0); (6.19)and a straightforward calculation|making use of hy0; Ui = 0|yields that the map H0has the simple structure H0(T; Y; c) = �tc; yc; c+ tc(0)� T i�; (6.20)where tc and yc are given bytc(x) = T f + (T e � T f) exp(c (x� a)cp=�); (6.21)yc(x) = Y f + (Y e � Y f) exp(c (x� a)cp=�); (6.22)and only depend on c.We can then de�ne a third homotopy by introducing the operatorA� : O �! B;de�ned by A� (T; Y; c) = ��tc; �yc; c+ tc(0)� T i�:One may easily check that A� is well posed and that the degree d(I �A� ;
; 0) is wellde�ned. We thus obtain thatd(I �K1;
; 0) = d(I �A0;
; 0);so that from A0(T; Y; c) = �0; 0; c+ tc(0)� T i�and the multiplicative properties of the degree, we haved(I � K1;
; 0) = d(T i � tc(0); (�; �); 0):From (6.21) we have tc(0) = T f + (T e � T f) exp(�c acp=�);so that �nally d(I � K1;
; 0) = 1;44



since � < T f < T i < T e < � and there exists a solution to the problem posed on abounded domain.7. EXISTENCE OF SOLUTIONSIn this section, we pass to the limit a!1 and obtain a solution of the anchored
ame problem. A �rst step is to derive a lower bound for the 
ame eigenvalue c whichis independent of a. Another important point is to investigate the behavior of thesolution near the equilibrium state �e.7.1. Uniform estimates for cLemma 7.1. For 0 < � < �e � �f there exists a unique point x� such thatZ ax�� dx = �c:Proof. The function 	 de�ned on (�1; a] by	(x) = Z x�1� du;is strictly increasing since � is strictly positive over (�1; a]. Arguing by contradiction,we indeed note that for x0 < 0, �(x0) = 0 implies that �(x0) = 0 and thus that�(x0) = �f from (5.2) and the Cauchy-Lipchitz theorem yields �(x) = �f for any x � 0,contradicting T f 6= T i. Similarly, for x0 � 0, �(x0) = 0 implies that �0(x0) = 0 and�(x0) = 0. Since Y (x0) > 0, we deduce from �(x0) = 0 that �(x0) is an equilibriumpoint and from the Cauchy-Lipchitz theorem we obtain that �(x) = �(x0) for 0 � x � a,contradicting T (0) = T i 6= T e = T (a).We now show that �(x) is close to �e when the integral of the dissipation rate �over the interval [x; a] is small, in particular for x 2 [x�; a].Lemma 7.2. There exists a constant �0 such that for any a � 1 we have8x 2 [0; a]; 

�(x)� �e

2 � �0�1c Z ax �(u) du�1=2: (7.1)Proof. We �rst note that there exists � such that we have uniformlyk� � �ek2 � ���e � � � 
(@��)e; �e � ���;since T is uniformly bounded and hY; Ui = 1. Since (@��)e 2 (0;MR)? we easilyobtain, by combining the conservation equations and the entropy equation, thatc��0 � 
(@��)e; ��0�+ �
@��; ��� 
(@��)e; ���0 = �: (7.2)45



We multiply this equation by  = 
@��; ��� 
(@��)e; �� and integrate over [x; a]. Thisyields � 12 2 = Z ax � du� c Z ax ��0 � h(@��)e; �0i� du:However, we can now estimateZ ax ���0 � h(@��)e; �0i�� �� �� du; � � Z ax � du;so that by using j j � c+ (1=c) 2 we obtain 2 � �c Z ax � du+ �c Z ax  2 � du:Using a (backward) generalized Gronwald Lemma [Bou76] we now obtain 2 = ���
@��; ��� 
(@��)e; �����2 � �c Z ax � du:On the other hand, by integrating (7.2) over [x; a], we getc��e � � � 
(@��)e; �e � ����  = Z ax �(u) du;which yields that �e � � � 
(@��)e; �e � �� � ��1c Z ax �(u) du�1=2;which completes the proof.We now estimate more closely the integral of the dissipation rate � when � is closeto �e. This result will then be applied over the interval [x�; a].Proposition 7.3. There exists positive constants �1 < T e � T f and �1 such that forany a � 18x 2 (�1; a]; k�(x)� �ek < �1 =) Z ax �(u) du � �1�(x):Proof. We de�ne ve as the unique equilibrium point in the conservation mani
od� + (0;MR). By construction, we have (@��)(ve) 2 (0;MR)? and by combining theconservation equations and the entropy equation we easily obtain thatc��e � � � 
(@��)(ve); �e � ���+ D(@��)(ve)� (@��); �E = Z ax �(u) du:46



We can rewrite this identity in the formc��(ve)� � � 
(@��)(ve); ve � ���+ c��e � �(ve)� 
(@��)(ve); �e � ve��+ D(@��)(ve)� (@��); �E = Z ax �(u) du; (7.3)so that by using (@��)(ve) 2 (0;MR)? and � � ve 2 (0;MR), and taking into accountthe concavity of �, we obtainc ��(ve)� ��+ D(@��)(ve)� (@��); �E � Z ax �(u) du: (7.4)On the other hand, when � is close enough to �e, say k�(x) � �ek < �1, we can writethat �kve � �k2 � �(ve)� �(�) � �kve � �k2;and ���
@��(ve)� @��; ����� � ��kve � �k2 + k�k2�;so that ���
@��(ve)� @��; ����� � ���(ve)� �(�) + 
(@2��)�0; ���:Finally, using the local stability inequality of Proposition 3.11, we deduce that thereexists �1 such that Z ax �(u) du � �1�(x);for k�(x)� �ek < �1 since c is bounded by above independently of a for a � 1 and theproof is complete.By using Proposition 7.3, we now obtain that the exponential decay of the integralof the dissipation rate � near equilibrium.Corrolary 7.4. Let � such that 0 < � < T e � T i and de�ne z� � 0 to be the largestx such that k�(x)� �ek = � and k�(t)� �ek � � for all t 2 [x; a]. Then there exists aconstant d such that for any a � 18� 2 (0; �1]; 8x 2 [z�; a]; Z ax �(u) du � �Z az� �(u) du� exp��d(x� z�)�: (7.5)We know obtain a positive lower bound independent of a for the 
ame eigenvaluec.Theorem 7.5. There exists a positive constant � independent of a such that� � c: (7.6)Proof. We consider �1 small enough such thatp�0 4p�1 � �1;47



so that for � � �1 we have z�1 � x�1 from Lemma 7.2. We then consider the point x�1=2which necessarily belongs to the interval (x�1 ; a). Using the exponential estimates ofCorollary 7.4 valid over [z�1 ; a] we obtain thatc�1=2 = Z ax�1=2� dx � (�e � �f)c exp��d(x�1=2 � z�1)�: (7.7)We also havep�0( 4p�1 � 4p�1=2) � k�(z�1)� �ek � k�(x�1=2)� �ek � k�(z�1)� �(x�1=2)k;and letting � = �0p�1 (1� 1= 4p2)2 we obtain from the entropic estimates� � �Z x�1=2z�1 k�0k dx�2 � (x�1=2 � z�1) Z x�1=2z�1 k�0k2 dx � �2c(x�1=2 � z�1);where �2 is independent of a. This now yields that�1 � 2(�e � �f) exp���1=c�;where �1 = d�=�2 and the proof is complete.Note that in Proposition 7.3 and Theorem 7.5 we have only used the local versionof the stability inequality concerning the chemical dissipation rate �.7.2. Convergence towards equilibriumTheorem 7.6. There exists a, d and C independent of a such that8a � a 8x 2 [0; a]; k�(x)� �ek � C exp(�dx); (7.8)Proof. In order to establish exponential convergence towards equilibrirum, we onlyhave to establish that for a given � > 0, z� remains bounded independently of a. Let0 < � < �1|where � is determined later|and de�ne a0� = c(�e� �f)+ 1 where c is anupper bound for the eigenvalue c. Then, for a � a0, there exists necessarily x0 2 [0; a0]such that �(x0) < �. Since we have h�; �i � b�;uniformly over (�1; a] with b independent of a, we deduce that k�(x0)k2 � b�. SinceQ(���e) = Q(���f) = �Q(�) where Q is the orthogonal projector onto (0;MR)?, wecan further use the global inequality of Proposition 3.15. This yields that �(ve)�� � ��,so that kve � �k2 � ��:In addition, we can also write that kve � �ek � �p� since Q(� � �e) = �Q(�). As aconsequence, we obtain 

�(x0)� �e

2 � �3�;48



where �3 is a constant. Assuming now � < �1=(1 + �3) we obtain thatZ ax0� du � �1�(x0) � �1�:Further assuming �1� < c(�e��f), then x�1�=c can be de�ned as in Lemma 7.1 and wehave the estimate x�1�=c � a0. Letting�� = 12 inf� �11 + �3 ; c (�e � �f)�1 ; c �41�20�1�;we �nally obtain from Lemma 7.2 that z�� is well de�ned with �� < �1 and thatz�� � a0 = �c (�e � �f) + 1�=��:Since z�� is bounded independently of a, we now obtain from Corrolary 7.4 that8a � a0; 8x 2 [0; a]; Z ax � du � � exp(�dx);and the proof is complete using again Lemma 7.2.Theorem 7.6 is the only place where the global inequality of Proposition 3.15 isused.7.3. Passage to the limit a!1Theorem 7.7. There exists a C1 solution to the anchored 
ame problem.Proof. We consider a sequence of solution (T i; Y i; ci) of the anchored 
ame problemover the domains [0; i] for i 2 Nnf0g. From the a priori estimates derived in Sections 5,6 and 7, we can extract a subsequence converging towards (T; Y; c) on every compactin the C2 topology. We then know that � < T < � and � < c < �, where � and �are independent of i, and that Y � 0, hY; Ui = 1. From the uniform L2 estimates ofderivatives, we easily deduce that T 0, Y 0, T 00 and Y 00 are in L2 and from the exponentialestimates, we also deduce that �(1) = �e. As a consequence, we conclude that (T; Y; c)is a solution of the anchored 
ames problem and from Lemma 5.1 we also obtain thatY > 0. Finally, the C1 regularity follows from the C2 regularity and the governingequations.Note that the estimates obtained in Section 6 on a bounded domain [0; a] couldalso be conducted directly over [0;1). 49
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APPENDIX : Generalized Stefan-Maxwell -Boltzmann equationsThe kinetic theory of gases yields explicit expressions for transport 
uxes but notfor transport coe�cients. Transport linear systems have indeed to be solved in order toevaluate transport coe�cients in gaseous mixtures. In this Appendix, we focus on thesimplest linear systems associated with multicomponent di�usion coe�cients and relatethese systems to the so called Stefan-Maxwell-Boltzmann equations [Gio91] [EG94].A.1 The matrices � and DThe transport linear systems associated with the multicomponent di�usion coe�-cients D are the n linear systems of order n indexed by l, l 2 S,(�xl = yl;xl 2 Y ?; (A:1)where � 2 Rn;n and xl; yl; Y 2 Rn. The matrix � is given by8>>>>><>>>>>:�kk = Xl2Sl6=k XkXlDkl ; k 2 S;�kl = � XkXlDkl ; k; l 2 S; k 6= l; (A:2)where Dkl is the binary di�usion coe�cient for the species pair (k; l) when �rst orderdi�usion coe�cients are considered [Gio91]. In this situation, the binary coe�cients Dkl,k; l 2 S, only depends on pressure and temperature Dkl = Dkl(T; p). More generally,for more accurate multicomponent di�usion coe�cients, the quantities Dkl, k; l 2 S,are obtained as Schur complements from transport linear systems of size larger than n,and are then function of T , p, and Y , but have similar properties [EG94].The right members yl, l 2 S, are given byylk = �kl � YkPm2S Ym ; k 2 S; (A:3)where �kl is the Kronecker symbol. Finally, the di�usion coe�cients Dkl, k; l 2 S, areevaluated by Dkl = xlk; k; l 2 S: (A:4)The relations (A:1) can easily be rewritten in terms of the species di�usion veloc-ities Vk = �Pl2S Dkl
0l and yields
0k = Xl2Sl6=k XkXlDkl Vl � �Xl2Sl6=kXkXlDkl �Vk; k 2 S; (A:5)52



termed Stefan-Maxwell-Boltzmann equations in the literature. These equations haveto be completed by the mass constraintXk2S YkVk = 0: (A:6)as the transport linear systems (A:1). However, although one may work with di�usionvelocities and system (A:5), it is more elegant and more e�cient to work directly withthe transport coe�cients [Gio91].The matrix � is easily shown to have the following properties [Gio91] [EG94] [EG97].Lemma A.1. Assume that the molar masses mk, k 2 S, are positive constants,that the coe�cients Dkl are positive and symmetric, and that the mass fractions Yare positive. Then � is symmetric positive semi-de�nite, N(�) = RU where U =(1; : : : ; 1)?, R(�) = U?, and yl 2 R(�), l 2 S. Moreover, � is irreducible and is asingular M matrix.The matrix D is then easily related to a generalized inverse of � with prescribedrange and nullspace [Gio90] [Gio91] [EG94] [EG97].Proposition A.2. Keep the assumptions of Lemma A.1. Then the n linear systems arewell posed and the matrix D is the generalized inverse of � with prescribed range Y ?and nullspace RY . More speci�cally, D is the the unique matrix such that D�D = D,�D� = �, R(D) = Y ? and N(D) = RY . As a consequence, the matrix D is positivesemi-de�nite, we have �D = I � Y
U= hU; Y i, D� = I � U
Y= hU; Y i, and for anypositive a and b with abhU; Y i2 = 1 we have D = (�+ aY
Y )�1 � bU
U:A.2 The matrices � and CWhen some mass fraction are vanishing, the di�usion velocities are no longer de-�ned and we have to consider the mass 
uxes [Gio91]. As a consequence, we introducethe matrix � de�ned by8>>>><>>>>:�kk = 1� mmk Xl2Sl6=k XlDkl ; k 2 S;�kl = � 1� mml XkDkl ; k; l 2 S; k 6= l; (A:7)which satis�es � = �(�Y) [Gio91] . The transport linear systems associated with the
ux di�usion coe�cients C are the n linear systems of order n indexed by l, l 2 S,(�~xl = yl;~xl 2 U?; (A:8)and the 
ux di�usion coe�cients Ckl, k; l 2 S, are evaluated byCkl = ~xlk; k; l 2 S: (A:9)53



One can also write the analog of equations (A:5) for multicomponent 
uxes 
0 = ��Fwith the constraint F 2 U? [Gio91].Lemma A.3. Assume that the molar masses mk, k 2 S, are positive numbers, letDkl be positive numbers de�ned for k; l 2 S, k 6= l, and symmetric, i.e., Dkl = Dlk, fork 6= l, and assume that Y � 0 and Y 6= 0. Then the matrix � is such that N(�) = RYand R(�) = U? and is a singular M-matrix.Proposition A.4. Keep the assumptions of Lemma A.3. Then the n linear systems(A.8) are well posed and C is the group inverses of �, that is, C is the generalized inverseof � with prescribed range U? and prescribed nullspace RY . The matrix C is thus theunique matrix such that C�C = C, �C� = �, R(C) = U? and N(C) = RY . We alsohave C� = �C = I �Y
U= hU; Y i and for any positive a and b with abhU; Y i2 = 1 wehave C = (� + aY
U)�1 � bY
U: Finally, when all mass fractions are positive, wehave the identity C = �YD: (A:10)The next proposition gives the behavior of the matrices � and C when some of themass fractions are vanishing [Gio91] [EG94].Proposition A.5. Keep the assumptions of Lemma A.3 and de�ne S+ = f k 2S; Yk > 0 g and S0 = f k 2 S; Yk = 0 g. Let � be the permunation matrix associatedwith the reordering of S into (S+; S0). We then have the following block decompositionsfor C and � �?C� = �C++ C+00 C00 �; �?�� = ��++ �+00 �00 �; (A:11)where C00 and �00 are diagonal with positive entries and inverse of each other, andC++ and �++ are exactly the matrices that would be obtained by considering onlythe S+ mixture of nonzero mass fractions. In particular, the matrices C++ and �++satisfy the properties of Lemmas A.1 and A.3, and Propositions A.2 and A.4, for thesubmixture S+.A.3 Irreducibility and diagonal di�usionIn this section, we investigate the irreducibility of multicomponent di�usion ma-trices and the diagonal di�usion problem. Irreducibility is directly deduced from theassumptions of Section 4.Proposition A.6. The 
ux di�usion matrix C is irreducible if and only is Y > 0 sothat the di�usion matrix D is always irreducible.Proof. From Proposition A.4 we already know that when some mass fractions arevanishing, the matrix C is reducible. As a consequence, we only have to establish that54



the converse is true. We assume that C is reducible so that there exists a permutationmatrix � such that �?C� = �Caa Cab0 Cbb �;where the superscripts a and b are used to denote the reordering associated with �.Since R(C) = U?, we deduce that R(�?C�) = U? so that R(Caa) � (Ua)?. Thisshows that Caa is singular so that there exists xa 6= 0 such that Caaxa = 0. Introducingthe vector x = (xa; 0)?, we obtain that �?C�x = 0 which yields �x 2 N(C) = RY .We have thus shown that �(xa; 0)? = �Y and � cannot be zero since xa 6= 0 so that�nally Y = (1=�)�?(xa; 0)? and some mass fractions are vanishing.We have shown in Proposition A.6 that the matrix C is irreducible when Y > 0 andthis matrix cannot a fortiori be diagonal. However, we may ask for a weaker propertysince the physical vectors|the di�usion driving forces|always lie in the hyperplaneU?. Only the property of being represented by diagonal matrix over U? is needed.Moreover, a diagonal di�usion model is only interesting if the 
uxes are expressed interms of the mass fractions gradients which are the natural species variables. We havethus to investigate when the matrix C (dY 
) is diagonal over U?. However, sincedY 
 = 1hY; Ui�I � X
UhY; Ui� Awe have (dY 
)x = Ax=hY; Ui for x 2 U? since A?U = U . It is thus equivalent toinvestigate the case where CA is diagonal over U? and this problem has been solvedin [Gio91].Proposition A.7. The matrix CA coincides with a diagonal matrix on the subspaceU? if and only if the numbers Dkl, k; l 2 S, k 6= l, are equal. In this situation we haveCA = D�I � Z
UhU; Y i�; (A:12)where D denotes the common value of the �Dkl= hU; Y i for k 6= l and Z = A�1Y .
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ERRATUMPlane Laminar Flames with Multicomponent Transport and Complex ChemistryOn page 13 �(h; Y ) = ���(T; Y )� = s(T; Y ): (3:2)On page 17 c hY; ui0 + hF ; ui0 = 0: (3:25)On page 18 ��1�hf ;X� � f (T; Y ); � � T; Y � 0; hY; Ui = 1 g;On page 28 dk = CkkhY; Ui mmk ; (4:11)�k = �Ckkmk �Xl2S Ylml ��2 Xl2Sl6=k Y 0lml + Ckkmk e�k�Xl2S Ylml ��1T 0T +Xl2Sl6=k �Dkl�
0l + 
le�l(T 0=T )�;(4:12)On page 29 
(@2��)�0; �� = 
(@��)0; �� = � 1T �0q �Xk2S�gkT �0Fk;
On page 32 cXk2S Y fk (hk � hfk)� �T 0 + cRTXk2S e�kmk Y fk = 0:
On page 35 ... and h by R T0 cpdu+Pk2S hk(0)Yk: That is ...56



�cpT 0 +Xk2S hk(T )Y 0k; Y 0�? = L]�c�Z T0 cpdx+Xk2S hk(0)Yk; Y �? � c�f � Z x0 w(u) du�;�ecpt0+Xk2S hky0k; y0�? = eL]�c�Z t0 ecpdx+Xk2S hk(0)yl; y�?� c�f � � Z x0 ew(u) du�; (6:5)On page 39 ���0h@��; �i�� = ���cp T 0T +Xk2S skY 0k��� �����T 0T +Xk2S(sk + R e�kmk )Fk���;
On page 40c(� � �f) + h@��; �i = Z x�1� du � Z 0�1� du = c��(0)� �f � 
@��(0); �(0)� �f��:
On page 41 c2 Z 10 �

� � �f � �c Z x0 w du

2 + �� 1c h@��; �i��2� dx � bc:jT (a)� T (0)j � Z a0 jT 0(x)j dx � pa�Z a0 jT 0(x)j2 dx�1=2 ;T e � T i � bpa�Z a0 � dx�1=2 � bpcpa;On page 43�ec �p t0 +Xk2S h�k y0k; y0�? = ( eL� )]�c�Z t0ec �p dx+Xk2S hk(0)yk; y�? � c �f;��; (6:17)eC� = � eC + (1� �)D�IheY ; Ui � eY
U�;57



�f;� = �Xk2S Y fk �hk(0) + Z T f0 ec �pkdx�; Y f�?;
On page 44 �e;� = �Xk2S Y ek �hk(0) + Z T e0 ec �pkdx�; Y e�?;
On page 50 (Missing references)[BL92] J. D. Buckmaster and G. S. S. Ludford, Theory of Laminar Flames, Cam-bridge University Press, Cambridge,( 1982).[HCC53] J. O. Hirschfelder, C. F. Curtiss and D. E. Campbell, The Theory of Flamesand Detonations, Fourth International Symposium on Combustion, (1953)190{210.
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