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We consider plane laminar flames with multicomponent transport and complex chem-
istry. The governing equations are derived from the kinetic theory of gases by using the
classical isobaric approximation. An arbitrary number of reversible chemical reactions and
temperature dependent species specific heats are considered in the model. The most general
form for multicomponent transport fluxes given by the kinetic theory is also taken into ac-
count. Upon first considering a bounded domain and then letting the size of the domain to
go to infinity, we obtain an existence theorem. We also establish that the natural entropy
production norm associated with multicomponent diffusion is a solution weighted norm.

1. INTRODUCTION

Numerous studies have recently been devoted to plane laminar lames with complex
chemistry [Hei87] [VV90] [Bon92] [BL93] [VV94] [Bon94]. Important advances have been
made in these papers which were essentially concerned with irreversible exothermic
chemical reaction networks and elementary transport models.

In this work, we investigate the flame equations derived from the kinetic theory of
dilute polyatomic reactive gas mixtures [EG94]. The reaction network that we consider
is composed of an arbitrary number of reversible chemical reactions. The reaction rates
of progress are of Maxwellian type and the rate contants satisfy natural reciprocity rela-
tions. Moreover, the most general form for multicomponent transport fluxes obtained
from the kinetic theory is included in the model with mixture dependent transport
coefficients. In particular, all species second derivatives are coupled through diffu-
sive processes and are coupled to the temperature second derivatives through thermal
diffusion, that is, species diffusion due to temperature gradients. The temperature
dependence of species specific heats is also taken into account.



We consider two types of cold boundary conditions. The first type is associated
with the anchored flame model [HCC53] and the corresponding domain is the half line
[0,00). This model also corresponds to boundary conditions often used in numerical
simulations of complex chemistry flames [Ser86] [GS92]. It also modelizes an experimen-
tal configuration where the flame is dynamically stabilized far away from the injection
device by using laser tomography [Qal84] [Cla85]. The second type of boundary con-
ditions that we consider is that of an infinitly far cold boundary. The corresponding
domain is then the full line (—o0c,00). In this situation, we use a Heavyside cutoff
function for the source term in order to remove the cold boundary difficulty and both
models are shown to be equivalent. On the other hand, the hot boundary condition is of
Dirichlet type and corresponds to an equilibirum point whose existence and uniqueness
is established.

We first consider the problem on a bounded domain [0, a]. The existence theorem
is obtained by using a fixed point formulation and the Leray-Schauder topological
degree. The definition of the degree is obtained by estimating a priori the solutions.
In particular, we obtain for the first time an estimate of the maximum temperature
in a flame with nontrivial transport. To this purpose, we establish a fundamental
inequality for the quadratic form associated with diffusion matrices, using previous
results on multicomponent transport [Gio91] [EG94]. Combining this inequality with
the entropy conservation equation, we obtain a natural entropy production norm for
diffusive processes which is a solution weighted norm in the form

Y ©

keS

where Y}, is the mass fraction of the k*® species and S the set of species indices.

We then let a — oo and obtain an existence theorem as well as exponential con-
vergence towards equilibrium at infinity. A key point in the proof is to derive a lower
bound independent of a for the eigenvalue of the flame problem. Exponential con-
vergence towards equilibrium is achieved by using entropic estimates and a stability
inequality concerning the chemical dissipation rate.

The governing equations for complex chemistry flames are presented in Section 2.
In Section 3 we specify the mathematical properties for thermodynamic functions and
we establish existence and uniqueness of the equilibrium state at the hot boundary. The
mathematical properties of transport coefficients are investigated in Section 4 where we
establish the fundamental diffusion inequality and the entropy conservation equation.
The equivalence of both problem formulations is obtained in Section 5. Existence on a
bounded domain is obtained in Section 6 and, finally, existence of a solution is obtained
in Section 7.

2. GOVERNING EQUATIONS

The governing equations for steady plane laminar flames with complex chemistry
and detailed transport are obtained from the multicomponent reactive flow equations—
derived from the kinetic theory—under the classical isobaric approximation.
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2.1. Conservation equations

The equations modeling steady plane laminar flames with complex chemistry ex-
press the conservation of species mass and energy. The species conservation equations
can be written in the form [Wil85] [EG94]

cY, + Fj, = mypwy, ke, (2.1)

w/

where ¢ is the mass flow rate, Y3 the mass fraction of the k' species, “’” the space
derivative operator, Fj the mass flux of the k*" species, my, the molar mass of the k"
species, wy, the molar production of the k*™® species, S = [1,n] the set of species indices
and n the number of species assumed to be n > 2.

The energy conservation equation can be written in the enthalpy form

ch’+4¢ =0, (2.2)
where h is the specific enthalpy of the mixture and ¢ the heat flux. By using the
expressions of the mixture enthalpy h and of the heat flux ¢, a governing equation for
the absolute temperature 7" will be obtained in Section 2.6.

The unknowns are the mass flow rate ¢, which is a nonlinear eigenvalue of the prob-
lem, the mass fraction vector Y = (Y1,...,Y,,)* where * is the transposition symbol,

and the enthalpy h or equivalently the absolute temperature T'. It will be convenient
to introduce the unknown & defined by

E=(h, Y1,..., )" (2.3)
The corresponding fluxes are denoted by
d=1(q, Fi,..., Fn)", (2.4)
and the corresponding sources by
w = (0, mwi,..., Muwp)*. (2.5)
The conservation equations can then be written in the compact form
ct +¢' =w, (2.6)
and these equations have to be completed by the relations expressing the transport

fluxes Fr, k € S, and ¢, the thermodynamic properties like the enthalpy A, and the
chemical source terms wy, k € S.

2.2. Thermodynamic properties

The pressure p is taken to be a positive constant
p = Cte, (2.7)
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and the density is given by the state law

p(1.Y) = %(Z Z—) (2.8)

where R the universal gas constant and T the absolute temperature. The specific
internal enthalpy h of the mixture is given by the expression

WT.Y) =Y Yih(T), (2.9)
kesS

where the quantity hj is the internal energy per unit mass of the k*® species. The
quantity hg = hg(T') can be written

T

hi(T) = h) +/ cpn(t) dt, (2.10)

where h{ is the enthalpy of formation of the ktt species at the positive reference tem-
perature Ty and ¢y is the specific heat at constant pressure of the kP species. The
mixture specific heat at constant pressure ¢, is defined similarly by

ep(1,Y) = Yiepn(T). (2.11)

The mathematical assumptions concerning the specific heats c,i, £ € S, are specified
in Section 3.

Species mole fractions are also needed for modeling complex chemistry flames. In-
deed, although mass related quantities like momentum are conserved during molecular
collisions, chemistry production rates and diffusive processes are related to species col-
lision rates, and therefore, to molar properties. We denote by X the mole fraction of
the k' species defined by

m
Xp(Y) = il (2.12)

where m is the molar mass of the mixture given by

Y Y,
L’“Ej’ FoNT 2R (2.13)
m my
keS
In the following, we will also need the quantity 7 defined by
Y X
- efme X (2.14)

a ZlES le/ml B ZlES Xl

and which essentially represents the mole fraction of the k' species.

The natural species variables for flame problems are the mass fractions. We have
chosen, for convenience, to consider these mass fractions Yy, & € S, as formally in-
dependent unknowns, and to recover the relation Zkes Y, = 1 from the conservation
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equations. As a consequence, some care must be taken in defining thermodynamic
properties, in order to maintain homogeneity and extensivity. In particular, the rela-
tion (2.13) contains a factor ), ¢ Yy which avoids various artificial singularities, e.g.,
when relating the derivatives of mole and mass fractions [Gio90] [Gio91]. After some
algebra, the relations (2.12) (2.13) yields that ), ¢ Yi = > ,cg Xx so that we also
recover the relation ), - X = 1 from the species equations.

2.3. Thermodynamic properties for positive mass fractions

The thermodynamic properties introduced in Section 2.2 are defined for nonneg-
ative nonzero mass fractions Y > 0, Y # 0. We write z > 0, respectively z > 0,
when z = (z1,...,2,) and zx > 0, respectively zx > 0, for every k € S. For positive
mass fractions Y > 0, however, we can further define the species entropies and free
enthalpies. Indeed, the kinetic theory yields the specific entropy of the k' species

T

t R

s1(T,Y) = 5,7 +/ () dt — — log(vk), (2.15)
T, t mp

where szp the formation entropy of the k*! species at the positive reference temperature
Ty and pressure p. It will be convenient to define

T

t

sP(T) = sgp+/T cka() dt (2.16)
0

which represents the entropy of the k' species at pressure p. The specific entropy of
the mixture is then the quantity

S(T,Y) =D Yisi(T,Y), (2.17)
keS

and will play a fundamental role in the analysis.
We will also need the expression of the species free enthalpies gi, £ € S, that is,
the species Gibbs functions

g(T,Y) = hy(T) — sx(T,Y) T, (2.18)
and the standard free enthalpy ¢, at pressure p

Go(T) = hy(T) — s(T) T, (2.19)

Finally, we introduce for convenience the reduced quantities

P
9,(T) Ik 1

Ty = T2, T,Y)= 22 = pb(T) + —1 2.20
i) = o (1Y) = B = )+ leg(n), (2:20)

The free enthalpies g, k € S, and the quantities ug, £ € S, will be needed for investi-
gating chemical equilibrium and the entropy production rate due to chemistry.
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2.4. Maxwellian chemistry

We consider a system of ny reversible reactions for n species

S vlSe = > viSe,  i€R (2.21)
kesS kes

where Sy, is the chemical symbol of the k" species, 1/,‘31- and vy, the direct and reverse
stoichiometric coefficients of the k' species in the it reaction, and R = [1,np] the set
of reaction indices. Note that all chemical reactions are reversible and that the number
of reactions ny is arbitrary.

The molar production rates that we consider are the Maxwellian production rates
obtained from the kinetic theory [EG94]. These rates are obtained in a reactive kinetic
framework—when the chemistry characteristic times are larger than the mean free
times of the molecules—and are compatible with the law of mass action [EG94]. In
this situation the molar production rate of the k" species can be written in the form
[Wil85] [EG94]

W — Z Vi Ti, (222)
i€R
where
Vki = Uy — VU, (2.23)

and where r; is the rate of progress of the i*" reaction. This rate r; is given by

yd, r yr,
ri = K2 H vort— K| v, (2.24)
keS keS

where vy is given by (2.14) and K¢ and K} are the direct and reverse rate constants
of the i*" reaction. Note that the reaction rates of progress are usually expressed
in terms of species concentrations pYy/my, k € S, rather than in terms of the ~g,
k € S. However, the expressions (2.24) are more suited to flame problems and are
easily obtained, after a little algebra, making use of the state law and of the isobaric
approximation. On the other hand, the quantities K& and K} are functions of the
temperature and their ratio is the equilibrium constant K¢ of the i*" reaction

K{(T)
K¢(T) = —i 2.2
i (T) KNT)’ (2.25)
given by
p
; T
log Kf(1) = — ) = g’“; ) (2.26)
keS

where g7 (T) is defined by (2.19).

The mathematical properties of the chemical source terms will be specified in
section 3. In particular, the stoichiometric coefficients satisfy element conservation and
total mass conservation.

There are several reasons for considereing only reversible chemical reactions in the
network. Indeed, the macroscopic constants K{ and K} are Maxwellian averaged values
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of molecular chemical cross sections appearing in reactive collisional source terms of
the species Boltzmann equations [EG94]. However, direct and reverse chemical cross
sections are always proportional, as are non reactive cross sections in any Boltzmann
equation, as can be shown from quantum mechanics [EG94]. A direct consequence is
the fundamental proportionality relation between the macroscopic direct and reverse
rate constants K3(T) = KI(T)/K¢(T) [EG94]. Consequently, we cannot assume that
one reaction constant vanishes without assuming that both vanish. A second reason for
assuming full reversibility is that the model must be able to describe the equilibrium
mixture at the hot boundary. However, statistical mechanics for uniform mixtures at
equilibrium also shows that detailed balance must prevail, so that irreversibility again
cannot be assumed. Last, but not least, hundreds of experimental measurements have
shown the validity of the fundamental relation K{(T) = K (T)/K¢(T). Note also
the difference between (2.24) and the rates of progress considered in previous studies
where the mass fractions appear in place of the mole fractions. This shows that the
assumption myg = m, k € S, has implicitly been made in all previous studies unlike the
present paper where the distinction between mass and mole properties is kept.

Remark 2.1. Another formalism for describing chemical networks has been intro-
duced by Feinberg [Fei95]. In Feinberg’s formalism, it is possible to associate an integer,
named the default, to each reaction network. In this formalism, only “zero default”
reaction networks have a satisfactory behavior for all possible values of the rate con-
stants. In Feinberg’s formalism, however, direct and reverse constants are assumed to
be independent. Feinberg’s negative results thus concern networks for which the ratio
KJ(T)/K!(T) is arbitrary. This is not the case according to the kinetic theory which
yields the fundamental constraint K&(T) = K[ (T)/K§(T). In particular, this relation
can be interpreted as a natural compatibility condition between chemistry and thermo-
dynamics. When this fundamental relation is assumed to hold, all classical results from
thermochemistry are valid [SS65] [Kra87] and there are strictly no restrictions on the
number of chemical reactions—other than obvious combinatorics—or on their linear
dependency. In this situation, Feinberg’s default can be arbitrarily large, but the corre-
sponding networks have a very satisfactory behavior and can be naturally investigated
by using Gibbs classical thermochemistry [SS65] [Kra70] [GM98] =

Remark 2.2. The direct rate constant is usually approximated by using a generalized
Arrhenius empirical relation

¢,
d b; ?
K{(T) =T exp(—ﬁ>,
where 2; > 0 is the pre-exponential factor, b; the pre-exponential exponent and &; > 0
the activation energy of the i*® reaction, but the exact expression of KJ(T') will not be

needed in the following. Note that these expressions are not bounded for large 7" when
b; is positive. m

2.5. Transport fluxes

The expressions for transport fluxes are obtained from the kinetic theory of dilute
polyatomic gas mixtures. We first express these fluxes in the general situation of
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nonnegative mass fractions, that is, when Y > 0, Y # 0. Such a dictinction between
positive and nonnegative mass fractions naturally arises in the kinetic theory of dilute
polyatomic gas mixtures [Gio91] [EG94].

Under the isobaric approximation, the species fluxes Fi, k € S, and the heat flux
g are in the form

Fi==) Culv+mx(T'/T)),  keS, (2.27)
les
g= AT+ RTY (x/m)Fi+ Y mF, (2.28)
les les

where C' = (Cii), e is the flux diffusion matrix, v, the quantity given in (2.14),
X = (X1,-- -, Xn)"* the rescaled thermal diffusion ratios, and A the thermal conductivity.

For positive mass fractions, one can further introduce the species diffusion veloci-
ties Vi, k € S, defined by

T
Vi, = 25 2.29
T (2.29)
and from (2.27), one can express these velocities as
Vk - ZDM (’yl, + ’Yl%l (T//T)), k€ S, (230)

les

where D = (Dkl)k,les is the diffusion matrix defined by Dy = Cy/(pYs), k,l € S.
The diffusion velocities turn out to be of fundamental importance since the matrix D
is symmetric positive semi-definite and is the matrix associated with entropy production
as will be shown in Section 4. Note that the multicomponent fluxes that we use have
natural symmetry properties [WT62] [FK72] [Gio91] [EG94] which have artificially been
destroyed in [HCB54].

Remark 2.3. The kinetic theory specifically yields Equation (2.27) with p) /p in place
of v}, where p, = pRTY)/my = pyx is the partial pressure of the k' species [EG94].
However, from the isobaric approximation, we have p}./p = (pr/p) = v;,- =

Alternate expressions for the diffusion velocities and the heat flux vector are

Fe=—>_ Cuy — pYibr(T'/T), k€S, (2.31)
les
q= —/):T, —p Z 91«7;@ + Z hi Fr., (2.32)
keS keS

where 6 = (4, ...,0,)* are the thermal diffusion coefficients, and A the partial ther-
mal conductivity. These expressions are more classical than (2.27) (2.28) and lead to
Onsager reciprocal relations. However, the expressions (2.27) (2.28) are more practical
from a mathematical point of view.



Note that all species second derivatives are coupled through the flux diffusion
coefficients C' and that multicomponent fluxes naturally involve mole fractions deriva-
tives. In addition, species and temperature derivatives are coupled through the thermal
diffusion coefficients x. These effects were not previously considered in flame models.

The mathematical properties of the transport coefficients A, C, D, and x are
specified in section 4.

2.6. The temperature equation

In order to derive a governing equation for the absolute temperature T, we can
use equations (2.1) (2.2) and the definition of the mixture enthalpy h. After a little
algebra, we easily obtain that

CpT/ = —(q - Z hkfk), - Z Cka/Fk - Z hkmkwk. (233)

keS keS keS

Using now the expression (2.28) for the heat flux ¢, we finally obtain the temperature
equation

CCpT’ = ()\T’ — RT Z(}?l/ml).ﬁ), - Z Cka/Fk - Z hkmkwk. (234)
les keS kesS

It is worthwhile to point out several differences between the temperature equation
(2.34) and the temperature equations considered in previous work. In all previous
work, it has been assumed that the species specific heats are species independent, that
is, ¢y = €y, k € S. In this situation, one has

ST Fo=5,T (3 F) =0,
keS keS

anticipating the mass constraint ), o Fx = 0. In this situation, one also has

E hkmkwk: E h%mkwk,

keS kesS

anticipating the mass conservation relation Zkes mywr = 0, since the temperature
dependent part of the enthalpies ki — hY = ¢,(T — T") are identical. Moreover, the
transport and specific heats coefficients were generally assumed to be constant with a
resulting simplified equation in the form

cEpT’ =\T" — E hzmkwk.
keS

In comparison, we first note that in (2.34) the source term . ¢ hpmpwy is not
bounded a priori even when assuming that the rate wg, k& € S, are bounded, since
the enthalpies are linearly increasing functions of temperature. In addition there is
a quadratic derivative term Zkes cprT' Fi,, and the coefficients A and ¢, are not con-
stants. Finally, maximum principles cannot be used when thermal diffusion is included,
that is, when y is nonzero.



2.7. Boundary conditions

We now specify the flame boundary conditions at the cold and hot boundaries.
We assume that the cold boundary is on the left side and the hot equilibrium boundary
on the right side.

The right boundary conditions is in the form

§(00) = £° (2.35),

where £° is an equilibrium point where the source term vanish w(£°) = 0. Existence
and uniqueness of the proper equilibrium &€ is established in Section 3. In particular,
this equilibrium state is such that Y® > 0, that is, satisfies Y;° > 0, k € .S, where the
superscript ¢ is used to denote the value at & = £° of any function of the state variables.

On the other hand, we consider two types of cold boundary conditions. The first
type corresponds to the anchored flame model with an unknown function ¢ defined on
the the half line [0, 00) and with the boundary conditions

c(£(0) — £ + $(0) = 0, (2.36)

and
T(0) =T, (2.37)

where ¢f is a given nonequilibrium state and 7% is a temperature such that Tt < T
The state ¢! is such that Y > 0, Zkes ka = 1, and such that each species of the
mixture is reachable from Y?! by the chemical network. The superscript f is used to
denote the value at ¢ = £f of any function of the state variables.

The anchored flame model has been introduced by Hirschfelder, Curtiss and Camp-
bell [HCC53]. This model corresponds to an idealized adiabatic flame holder located at
the origin. The anchored flame model supresses the cold boundary difficulty without
any artificial modification of the source term [HCC53] [BL82] [Wilg5]. This model also
corresponds to practical experimental configurations. Indeed, it is possible to inject a
reactive mixture through a porous plate in a tube and to stabilize a flame far from the
injection device by using laser tomography which triggers the injection velocity [Qal84]
[Cla85]. For such flames, by integrating the conservation equations through the adia-
batic porous burner, we obtain Equation (2.36). By choosing a temperature T" slightly
above the cold mixture temperature, we then recover the model. For exothermic sys-
tems, the temperature 7" can also be interpreted as an ignition temperature [Wil85].
Finally, the boundary conditions (2.36) (2.37) are also used in numerical modeling of
complex chemistry flames [Ser86] [GS92].

It is also possible to consider an unknown function £ is defined on the real line
(—o00,00) and to replace (2.36) by the condition

¢(—o0) = ¢". (2.38)

The relation (2.37) is still needed in order to remove the translational invariance of
the model. However, it is well known that the chemistry source terms only vanish at
equilibrium points, so that we have w(¢f) # 0 and (2.38) cannot be satisfied. This
problem is the well known “cold boundary difficulty”. Various cutoff functions ¢ have
then been used to modify the source terms w into 1w, in order to satisfy the boundary
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condition (2.38). In this paper, we consider a cutoff function in the form ¢ (z) =
1{0,00) (%) and thus source terms in the form 1py yw. For this cutoff function, we
establish rigorously in Section 5 that both formulations on (—oo, 00) and [0, 00) are
equivalent. As a consequence, it will be sufficient to investigate the anchored flame
problem on [0, 00).

Note that when a continuous function of the state variables is used as a cutoff
function, it introduces artificial equilibrium points in the phase space, and the dynamics
of the reactive system has to guarantee that such artificial points are not further reached
in the flame. For a priori exothermic systems, any increasing function of temperature
can be used as a cutoff function. However, this is no longer the case for arbitrary
reversible chemical networks, due to the lack of a priori monotonicity of the temperature
and more generally of state functions when multicomponent transport is considered.

Remark 2.4. A model with a cutoff term 1) which is a continuous function of temper-
ature has been used by A. Bonnet in [Bon92] [Bon94]. The flame model considered in
this paper corresponds to a generalized chemistry of irreversible type and to the simple
transport model ¢ = —d ¢’ where d is a constant. However, it turns out that Bonnet’s
proof that the flame does not reach again the ignition temperature 7' is wrong.
Indeed, Bonnet has used strong solutions of (2.1) with a modified source term
1[Ta7oo)(T) w involving a temperature dependent Heavyside function 1jpa o) (7)) with
T* = T" + e. Bonnet is claiming the existence of solutions of the modified equations
whose second derivatives are Lipchitz continuous and which satisfy pointwise the mod-
ified governing equations. He then shows that these solutions are indeed solutions
of the original equation since one establishes that 7" > T® when the source term is
1{72,00)(T) w. This yields a lower bound for the temperature of the original problem
with a non modified source term. However, these strong solutions do not exist. Indeed,
the existence argument of Bonnet is first wrong since when 9 (2) — 1i7s o) (2) point-
wise as k — 0o, where 1 is continuous, and when T3 — T by a compacity argument,
then we do not have 1y (Ty) — 1[7a o0)(T) pointwise since z — 1ipa ) (2) is discontin-
uous. Moreover, one can easily build the counterexemple —du"” = 1 over [—2, 2] with
u(—2) = 2 and u(2) = 2 whose solution is u(z) = x2/2. If a solution “4 la Bonnet” of
—dv" = 1,>1 would exist, one would get v > 1 and thus u = v, which is absurd. =

Remark 2.5. Note the difference between anchored flames and burner stabilized flames
for which the mass flux is imposed. Denoting by ¢f this prescribed mass flux, burner
stabilized flames satisfy the boundary conditions

K (Y(0) - Y™) + F(0) = 0. (2.39)

T(0) =T*, (2.40)

and the imposed mass flux ¢f is such that 0 < ¢f < ¢ where ¢ is the eigenvalue of
the anchored flame problem. The anchored flame problem thus corresponds to the
idealized limit of an adiabatic burner with ¢(h(0) — h') + ¢(0) = 0, whereas heat losses

are present for burner stabilized flames with 7(0) = 7. =
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3. THERMOCHEMISTRY AND EQUILIBRIUM POINTS

In this section we specify the mathematical assumptions concerning the thermo-
dynamic functions and the source terms. We then characterize the equilibrium state
£° as a unique equilibrium point in a given conservation manifold. From this charac-
terization, we establish existence and uniqueness of the equilibrium state £°. We also
investigate various thermodynamic functions over element conservation manifolds for
future a priori estimates.

3.1. Thermodynamics

The mathematical assumptions concerning thermodynamic properties are the fol-
lowing.

(Hy) The species molar masses my, k € S, and the gas constant R are positive
constants. The formations enthalpies h, k € S, and the formation entropies
szp, k € S, are constants. The specific heats c,i, k € S, are C°° functions
of T € [0,00). Furthermore, there exist positive constants ¢, and ¢, with
0<¢c, < cpr(t) < Cp, fort >0, and k € S.

Note that the thermodynamic functions ¢y, k € S, and hy, k € S, are defined for
T > 0, so that ¢, and h are defined for 7" > 0 and Y > 0. On the other hand, the
functions s, k € S, gx, kK € S, and ug, k € S, and s, are only defined for " > 0 and
Y > 0. One may also easily check that the domain of definition of s can be extented
toT >0and Y >0, Y # 0 by using 0log0 = 0. Nevertheless, the gas species specific
heats, and thus the enthalpies, are defined up to zero temperature, but not the gas
entropy which explodes like logT". The extension up to zero temperature of specific
heats and enthalpies is commonly used in thermodynamics. However, the entropy is
unbounded for small temperatures since we consider gaseous mixtures.

From assumption (H;) we first obtain that the various thermodynamic functions
are smooth. Since the pressure p is constant, all thermodynamic properties have also
been defined in terms of (7', Y). Since the natural conserved variables in flame problems
are (h,Y'), we now investigate the map = : (T,Y) — (h,Y).

Lemma 3.1. The map E : (T,Y) — (h,Y) is a C*° diffeomorphism from T > 0,
Y >0,Y #0, onto H where

H={(hY),h>)> Yih(0),Y >0 Y #0}. (3.1)
keS

Proof. This comes directly from the formula
T
WT,Y) =3 Yihi(0) +/ (Z chpk(t)) dt,
kes 0 “kes
and the positivity properties of the specific heats ¢, k€ S. =
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Lemma 3.2. Denote by o the function defined over H by

o(h,Y)=s(E(h,Y)) =s(T,Y). (3.2)
Then we have
(90:('9‘50:1. 0 azagaz—g—k:—Ruk. ke S, (3.3)
h 0 T' Yk k T ’ ’

and the Euler relation o = (8‘50, ¢) holds. Furthermore, 8§a is given by

B <(8§k§l0)$,x> _ (To — Dkes hyan)? n Z (wp/my)®  (Lges o /)

— , 3.4
R RTQCp Yk/mk ZZES le/ml ' ( )

kes

where (x,y) denotes the scalar product between vectors x and y. As a consequence, o
is concave and N(9o) = RE.

The proof of Lemma 3.2 is straightforward and is omitted. In order to simplify the
notation, we will most of the time use a single symbol in order to denote a function of
(T,Y) or a function of (h,Y) with an exception for . We will further need the matrix
A defined by A = dy X and a direct calculation yields

Ml T (3.5)
Akl:%(1—ﬂ), kieS, k#IL
my

It is interesting to note that the matrix A = dy X is invertible and that we have
AY = X where X = (X1,..., X,)* [Gio90].

3.2. Thermochemistry

We introduce here a set of assumptions concerning the chemical reactions and
the chemical production rates. The reactive species are assumed to be constituted by
elements and we denote by & the number of I*" element in the k" species. We also
denote by E = [1,ng]| the set of element indices and by ng > 1 the number of elements.

(Hs) The stoichiometric coefficients v, and v, k € S, i € R, and the element
coefficients &, k € S, | € E, are nonnegative integers. The element vectors
&, 1 € E, defined by & = (€1, ...,Em)*, and the reaction vectors v;, i € R,
defined by v; = (v1;, ..., Vn;)*, satisfy the element conservation relations

(vi, &) =0, i€R, leE. (3.6)

We also define the vectors v§ = (v ... vd)* and vf = (V%,,...,15.)%, i € R,

which satisfy (v, &) = (v}, &), i € R. The space spanned by the reaction
vectors is denoted by R = span{ v;, i € R } and the space spanned by the
element vectors is denoted by £ = span{ &, | € E } in such a way that

RcCéE and E CR.
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(H3) The element masses my, | € E, are positive constants and the species molar
masses myg, k € S, are given by

mp — Zﬁll gkl- (37)

IEE
Denoting by m the mass vector m = (my,...,my,)*, these relations can be
written in vector form
m = Z ﬁll 51- (3.8)
IEE

Remark 3.3. The elements may taken to be the atomic elements provided that the
corresponding vectors are independent. When this is not the case, it is first neces-
sary to eliminate linearly dependent atomic elements. For realistic complex chemistry
networks, the number of chemical reactions is always much larger than the number of
chemical species and one usually has R = £~. In other words, the chemical reactions
are spanning the largest possible space. When this is not the case, one has simply to
use the space R~ instead of £ [Kra70]. =

In the following, we also have to use the mass weighted production rates mgwy,

k € S. To this purpose, we introduce the mass weights matrix M, of order n, defined
by

M = diag(ma,...,my). (3.9)

The mass weighted stoichiometric coefficients are then the vectors Mv;, ¢ € R, and
the specific element compositions are the vectors M~'&,, | € E. The corresponding
spaces MR and M '€, spanned by these mass weighted vectors, are then such that
MR C (M) and M 1€ C (MR) in the composition phase space R". From
element conservation and the definition of species masses, we first deduce the following
mass conservation properties.

Lemma 3.4. The vector of chemical production rates w = (w1, .. .,wy)* can be written
in vector form
w= Z T Vi, (3.10)
1ER
so that w € R and Mw € MTR. In addition, the unity vector U € R" defined by
U= (1,...,1)*, satisfies U € (MR)~ so that we have the total mass conservation
relation
(U, Mw) =Y " myw, = 0. (3.11)
keS

Proof. These properties are straightforward from (Hs) and (Hj3) which imply that

U= mM &, (3.12)
leE

sothat U € (MR) . =
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3.3. Alternate expressions for the chemical production rates

It will be usefull in the following to decompose the production rates between the
creation and destruction rates.

Lemma 3.5. The chemical production rates wy, k € S, can be split into
weg =P — YN, k€S, (3.13)

where Py, and j\A/'k, are respectively the creation and reduced destruction rates of the
kth species. These rates are such that P, > 0, N}, > 0, and are smooth functions of
(T,Y), forT>0,Y >0,Y #0.

Proof. We simply use (2.22) (2.24) and write that wy = Py — N}, where

d llr,
P = Z(%K?H% " +V;‘3¢K{H7l“), (3.14)

1ER les les

Nie =3 (kS TTw" + vl [T (3.15)

1€ER lesS les

and

Since the stoichiometric coefficients are nonnegative integers, we can now write that

Nk Z’Yk( Z Vl?z'Kf’YZg H ’YV“ + Z Vi K v v H’Ylylri>7 (3.16)

tER leS 1ER leS
V;jizl I#k Vi1 l#k

so that Ny, = YNy, k € S, where

/szmik< ) (Z VK S H%“+ > vhKivk Hv”“),

leS les iER les
1@21 I#k Vi 21 I#k

(3.17)
which is a smooth function of (7,Y), for T >0,Y >0,Y #0. =

We now rewrite the rate of progress (2.24) by introducing new reaction constants,
making use of the equilibrium constants. We define K;, ¢« € R, by

log K; = log KN(T) — (Mv, uP) = log KI(T) — (M}, uP), (3.18)

where pf = gt /(RT), k € S, using log K§ = —(Muv;, u?) = (Mvg, u?) — (Mv}, u?), for
i € R. We can then rewrite (2.24) in the form

o~ Vd~ r l/r,4
ri = Ki (exo(Mud, wr) TT o = expav, wy TT ), (3.19)
kes keS

and from the definition py = pf, + (1/my)logyk, k € S, we finally obtain that
ri = K; (exp(MV?,,u) —exp(MVf,m). (3.20)
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The assumptions concerning the rate constants can then be written in terms of the
quantities K;, 72 € R.

(H4) The rate constants K;, i € R, are C'™ positive functions of T' € (0, 00).

Note that we neither assume that the quantities K¢, i € R, or K}, i € R, are
bounded functions of the temperature 7', as in previous studies, nor that the quantities
K;, 1 € R, are bounded.

3.4. Equilibrium points

In this section, we first restate that detailed balance holds at any equilibrium point.
We then establish existence and uniqueness of the proper equilibrium point.

Proposition 3.6. The reduced entropy production due to chemical reactions
C(Tv Y) = _</I'7Mw> =~ pom ngmkwk:

defined for T' > 0 and Y > 0, is nonnegative and admits 0 as a minimum at any point
where source terms vanish. Any point (T°,Y¥,....Y,?) withT® > 0 and Y;{ > 0, k € S,
where the source term vanishes

wr(Te,YE, ..., Y9 =0, keS, (3.21)
is also such that the rates of progress of each reaction vanish

(T, YE, ... Y)Y =0, icR, (3.22)

n

which can also be written in the form

<u(Te,Yf, N .,Ye),Myi> —0, icR (3.23)

n

Proof. Rewritting ¢ in the form

1
(= _ﬁ Z JeMEViiTi = _Z<N:M(Vir_yld)>ri’
i:eeg 1ER

and using (3.20), we obtain that
¢ =30 i (. Mv) = (u, Mv)) (explu, M) — exp(u, Mv])), (3.24)
i€R

so that {(T,Y) > 0 and ((T,Y) = 0 if and only if (u, Mv;) =0, i € R, that is to say,
if and only if r; = 0, 7 € R. In addition, r; = 0, ¢ € R, if and only if wy, =0, kK € S,
from the expression of (. =
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Definition 3.7. A point (T°,Y?, ..., Y,®) with T® > 0 and Y° > 0 which satisfies the

’ ’

equivalent properties of Proposition 3.6 will be termed an equilibrium point.

In order to characterize the equilibrium point £, we now multiply (2.1) by any
vector u € (MR)~ and we obtain that

c(Y,u) + (F,u)" = 0. (3.25),
Integrating formally over [0,0c) or equivalently over (—oo,00) we deduce that
(Yo vt u)y=o, (3.26)

keeping in mind that we only seek solutions with a positive mass flow rate c. Note
that such formal integrations can easily be rigorously justified. As a consequence, the
equilibrium point £€° must be such that Y° € Y! + MR. Similarly, integrating (2.2)
yields that

he = hf, (3.27)

and from the isobaric approximation we also have p¢ = pf = p.

As a consequence, we have to investigate existence and uniqueness of the equilib-
rium point in the affine submanifold Y! + MR with a given specific enthapy h® = hl.
Existence of equilibrium states is generally obtained by extremalizing a functional over
a conservation manifold. The functional to be maximized or minimized depends on
which thermal properties are kept fixed [SS65] [Kra70]. In our situation, since we im-
pose the pressure p and the specific enthalpy h, the proper functional to be maximized
is the specific entropy . Moreover, there are two variants depending if the formulation
is in terms of constrained [SS65] or free [Kra70] variables. The former method is more
suited to the mas fractions variables and will be used in this paper.

From the above consideration, we seek for the equilibrium mass fractions Y° in
the conservation simplex

X ="+ MR)N(0,00)" N{Y, > Yihi(0) <h'}. (3.28)
keS

In order to establish existence and uniqueness of the equilibrium £¢, we assume that
Tt >0, Y >0, (Y, U) = 1 and that (Y + MR) N (0,00)" # (). When the latter
property does not hold, we simply have to eliminate species from the network. This
property is weaker than the reachability property needed for homogeneous reactors
introduced in [VH85].

Proposition 3.8. Assume that (H,)-(Hy) hold, that ¢ € H, Y' > 0, (YL, U) = 1,
(Y + MR) N (0,00)" # 0. Then there exists a unique equilibrium vector Y*° in the
simplex X where the source term w vanishes. At Y®, the reaction rates of progress also
vanish and p® € (MR) .

Proof. First note that X is nonempty since there exists Y? € Y + MR with Y? > 0
so that (1 — 7)YT 4+ 7YP is in X for small positive 7. We characterize the equilibrium
point Y as the only extremum of the function Y — o(hf, V) which is a C* function
of Y over X. The partial derivative of o(hf,Y) with respect to the mass fractions Y is

aY U(hfa Y) = 7R:u:
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and o (h!,Y) is strictly concave over the convex set X. Indeed, we have from (3.4)

% Z (aisziﬁa(hfay))l'kl'l _ Z (x/mu)? B (ZkES 5I3k/mk)2’ (3.29)

klesS kesS Yo /v ZlES Yi/my

so that 0% (hf,Y) is negative semidefinite and N (0% (hf,Y)) = RY. However, we
have Y ¢ MR from MR C U~ and Y ¢ U~ since Y > 0 over X.
Because we want to maximize o (hf,Y), we only need to consider the subset X

x={vyex, okl Y)>0o(H) -1}

This set X is convex since ¢ is concave, is nonempty since (1 — 7)Yf 4+ 7YP € X for 7
small and positive. The mass fractions are bounded over X since Y € X implies Y > 0
and (Y,U) = (Y!,U) from the mass conservation constraint U € (MR)~. Moreover,
over the set X, the temperature T(hf7 Y) is easily seen to be positively bounded from
below since o is bounded from below. This implies that there exists a positive «

ENX) c {(T,Y);a<T, Y >0, (Y,U)y=1},

where s is defined and continuous. As a consequence, the function a(hf,Y) can be
extended over the closure X of X. Therefore, o(hf,Y) admits a maximum on this
convex compact set. Denoting Y™ any point where the maximum is reached, we claim
that Y™ is not on the boundary of X. Of course, it cannot be reached at the boundary
o = o (&) — 1. On the other hand, it can neither be reached at the boundaries Y = 0,
k € S. Indeed, considering any point Y in the interior of X, the function u(r) =
o(hf, 7Y™ + (1 — 7)Y™) is continuous over [0, 1], differentiable over (0, 1] and reaches
its maximum for 7 = 0. However, over the interval (0, 1], the derivative of u is given
by

W (t) = (Oyo, Y™ = Y™) = — E (aYkU)chin + E (8Yka)(ykin - Y,
kcS kes
Y;"=0 Y;">0

with dy 0 evaluated at (h', 7Y™ + (1 — 7)Y™). This implies that ' is positive in the
neighborhood of 7 = 0, since dy, o (h', 7Y™ + (1 —7)Y™) goes to —oo for 7 — 0 when
Y" = 0 whereas the sum over Y;" > 0 remains bounded, an obvious contradiction.
As a consequence, a(hf,Y) reaches its maximum in the interior of X , and, thanks
to the strict concavity of a(hf7 Y'), this maximum is unique and we denote by Y¢ the
corresponding point.

Since this maximum is reached in the interior of X we must have

pé = puh®,Y?) e (MR) . (3.30)

As a consequence, ( = —(u, Mw) vanishes at (h®,Y*®) which is therefore an equilibrium
point. Conversely, from Proposition 3.7, any equilibrium point on the simplex X is
such that the quantities (u, Mv;), i € R, vanish so that the partial derivatives of
o(ht,Y) along the simplex are zero. Since o(hf,Y) is a strictly concave function over
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X, it reaches a maximum at this point. Therefore, this point coincides with the unique
maximum of o(hf,Y) and the proof is complete. m

In the following proposition, we investigate how the equilibrium point £ depends
on the cold state & following [Kra70].

Proposition 3.9. Denote by ) the orthogonal projector onto (0, MR)~. Then the
equilibrium point £¢ only depends on Q(¢%) and is a smooth function of Q(¢F).

Proof. The equilibrium point £° only depends on Q(&f) by construction. Denote
by v1,...,v, an orthonormal basis of R" such that vy,...,v4 is a basis of MR and
Vdt1s---, U, a basis of (MR)™, where d = dim(R). The vectors (1,0)* where
O=(0,...,00* ¢ R" and (0,v;)*, for d+1 < i < n, form a basis of (0, MR)™ and the
corresponding components of Q(¢F) are hf = (¢f, (1,0)*) and (Y, v;), d+1 < i < n,
respectively. The equilibrium point ¢ is then the unique solution (h,Y) of the system

h = ht,
(Y,v;) = (Yf,1),~>, d+1<i<n,
(u(h,Y),v;) =0, 1<i<d.

The jacobian matrix of this system is easily shown to have full rank at equilibrium &°
since N (0y-p) N (MR) = {0}, so that the implicit function theorem applies. =

Finally, the assumptions concerning the cold state ¢' and the equilibrium temper-
ature T° are the following.

(Hs) The cold state ¢f is such that ¢f € #H, so that Tt > 0 and Yf > 0. The mass
fractions Y also satisfy (Y!,U) =1 and

(Y + MR)N (0, 00)" # 0,

and we have Tf < Tt < Te.

3.5. A local stability inequality

In this section we restate a stability inequality first derived by Boillat and Pousin
under similar assumptions [Boi95] [Pou93]. Remark first that the manifold ¢+ (0, MR)

can also be written Q(&) = Q(&F) or equivalently Q(€) = Q(£°).

Proposition 3.10. There exists a neighorhood U of the equilibrium point £° and a
contant 3 such that the inequality o® — o(hf,Y) < B¢ holds on 0 N X. That is, we
have

VEeTN{QE-€)=0},  a(&) —a(&) <B&).
Proof. We first note that

= Ri((Mv, ) — (M7, )) (exp(Muil, ) — exp(MuE,p)). (3.31)
1ER
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where I/(\', 1 € R, are positive functions. As a consequence, there exists a neighorhood
of £° such that

o 'Z<M1/,-,,u)2 < (, (3.32)

for a positive constant c.
On the other hand we note that

(=Y —Y°) = </0 Oy (Y + (Y = YO))dr (Y —Y°), (V — Ye)>,

and by using the negative definiteness of ROy = 020 over M'R we obtain that in the
neighborhood of ¢° and on the simplex X we have

Iy~ Yol < Bl(u - ut Y - Y)

Denoting by II the orthogonal projector onto MR, this implies that
1Y — Y| < B{[T(p— p°)

since Y — Y°® =TII(Y — Y°) on X. Moreover, we also have

1 p1
o o¢ = </ / (0%0) (Y +H(Y — Y®)) dtdr (Y — Y®), (Y - Ye)>.
Jo Jo
so that in the neiborhood of Y¢ we have
o —o < BllY —Y°? (3.33)

since we stay on the simplex X where 02 ¢ is negative definite. Combining the above
inequalities yields that

o°—o < B|mu—u)|" <8 (3.34)
since

(e~ p)|| < 8D AMvi,p— %) = B> (Mg, )

1€ER 1ER

and the proof is complete. =

A straightforward extension of the preceding proof yields the following inequality.

Proposition 3.11. There exists a neighornood U of the equilibrium point £&° and a
positive constant 3 such that

VEe W,  o(v%) —a(£) < B9,
where v¢ denotes the unique equilibrium point on & + (0, MR).
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3.6. Boundary equilibrium points

In Section 3.4, we have shown existence and uniqueness of the proper equilibrium
&° in the reaction simplex X. From Proposition 3.6 we also know that any point in
X where the chemical production terms vanish coincides with the unique equilibrium
point. In this section, we further investigate the boundaries with respect to the mass
fractions—of the reaction simplex X', which may hide points where the production
terms vanish but which are not a global maximum of the entropy function over X.

Definition 3.12. A point (T,Y) with T > 0 and Y > 0, Y # 0 is said to be a
boundary equilibrium point if w(T,Y) = 0 and if there exists at least a species k € S
such that Y = 0.

Note that it is always possible to construct reaction networks which have boundary
equilibrium points, e.g., by adding a given species both as a reactant and as a product
in each reaction of a given network.

Proposition 3.13. Assume that (T,Y) is a boundary equilibrium point and define
St=1{keS, YV, >0}and S°={k €S, Yy =0}. Let us introduce the sets

Rt={ieR VkeS vi=0and v, =01},

R ={icR, FkecS vl >00rv,>0}.

Then at (T,Y) we have r; = 0, for all i € R and Y is an equilibrium point of the S
mixture for the RT chemical network.

Proof. For any k € S°, the destruction rate vanish Yk/\Afk = 0, so that wy = 0 implies
that P = 0. Since Py is a sum of nonnegative terms, these terms must all vanish.
This shows that 7; = 0 for any reaction i € RY. On the other hand, considering the
submixture ST, and the chemical subnetwork Rt which may be empty we conclude
that Y+ is an equilibrium point of the submixture S*. =

Note that equilibrium points—which are interior to the simplex X—only depend
on the space spanned by the reaction vectors v;, « € R. On the other hand, boundary
equilibrium points depend on the effective values of the integer stoichiometric coefhi-
cients v and v}, i € R.

We now give a sufficient condition on stoichiometric coefficients which automati-
cally eliminates boundary equilibrium points provided that all elements are present in
the reactive mixture.

Definition 3.14. A reaction network will said to have the decomposition chain prop-

erty if for any T'> 0 and any Y > 0, Y # 0, we have

w(T,Y)=0and 3k €S, ¥V, =0 — dJlckE, (Y,M'&)=0.

In other words, a boundary equilibrium point can only be obtained provided that
one element is missing in the mixture at this point. The reaction scheme describing the
combustion of hydrogen in air used in [GS92] has the decomposition chain property for
instance. Heuristically, a reaction scheme has the decomposition chain property when
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sufficient three body recombination/decomposition reactions are taken into account. In
this situation, the decomposition reactions form chains which link the largest molecules
to the atomic elements and propagate the zero concentration property.

3.7. A global stability inequality

In the following, we assume that the reaction network and the conservation simplex
are such that there are no boundary equilibrium points.

(Hg) There are no boundary equilibrium points in the set X defined by

X={"+MR)N[0,00)"N{Y, ) Yihy(0) <h'}. (3.35)
keS

Under this assumption, we obtain a global stability inequality provided that the
temperature is bounded.

Proposition 3.15. Let a and b be positive constants such that a < T® < b. Then
there exists € > 0 and (3 > 0 such that

VEe{as<T<b}n{Y>0}n{QE—-¢)<e} (%) —0a() < L&),

where v® denotes the unique equilibrium point on & + (0, MR).

This proposition is proved by using a compacity argument. We already know
from Proposition 3.11 that such an inequality holds near equilibrium points. We also
know that the dissipation rate ((£) is positive for Y > 0 when £ is not an equilibrium
point. As a consequence, we only need to investigate the behavior of the chemical
dissipation rate ( near the boundary with respect to zero mass fractions of the set
fa<T<b}N{Y>0}n{QE—&)<e}.

Lemma 3.16. Consider the set {a < T <b}nN{Y >0} nN{Q(&—&°) < e} where
a and b are positive constants such that a < T° < b. Then, there exists ¢ > 0 such
that the functional ¢ is bounded from below by a positive constant near the zero mass
fraction boundary.

Proof. Assume that € is small enough in such a way that there are no boundary
equilibrium points in the set Q(& — £°) < e. Consider then a boundary point (T®, Y?)
such that Y is nonpositive. We can introduce the sets S*, S°, RT, and R°, as in
Proposition 3.13. For Y in the neiborhood of Y and Y positive, we now write

¢= %(Z gumy (YeNy — Pr) — Z gkmkwk>-

keso keSt

We have —gimyP; > 0, ¢;Y; — 0, and —g; — +o0, for [ € S°, when Y — YP?. On
the other hand, the quantities g;m;w;, | € ST, remain bounded in the neiborhood of
YP. As a consequence, if there exists k € S° with 73,2’ > 0, then ¢ goes to +00 as
Y — YP since —gpmiPr — +00. On the other hand, if P,? =0 for all k£ € S°, then
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the term — 7, o grmi Py is nonnegative—although it may be arbitrary large—if Y’
is sufficiently close to YP, whereas the second term goes to

+
- E JrMEWy

keS+

where w™ only involve the chemical reactions of Rt associated with the S* mixture.
This limit is then positive otherwise Y would be a boundary equilibrium point from
Proposition 3.6 applied to the submixture S*. =

Note that for flame problems, the local inequality of Proposition 3.11 only involve
high temperatures and small characteristic times. However, the global inequality of
Proposition 3.15 involve low temperatures and large characteristic times depending on
the lower bound a.

4. TRANSPORT COEFFICIENTS

In this section, we specify the properties of transport coefficients. These properties
are deduced from previous work on diffusion matrices [Gio91] and from kinetic theory
investigations of polyatomic reactive gas mixtures [EG94].

We first consider transport coefficients for nonnegative mass fractions. Indeed,
although solutions of the flame equations will be shown to have positive mass frac-
tions, we need to consider the case of zero mass fractions in order to achieve existence
theorems. In particular, in the presence of zero mass fractions, the diffusion velocities
cannot be defined [Gio91].

We then consider the more classical case of positive mass fractions. In this situa-
tion, we establish a new fundamental inequality about diffusion matrices which shows
that the natural norm associated with multicomponent diffusion is a solution depen-
dent weighted norm involving mass fractions at the denominator of the square of mass
fraction gradients.

4.1. Mathematical assumptions on transport coefficients

The following properties of flux transport coefficients are derived from previous
studies on diffusion matrices [Gio91] and kinetic theory investigations of polyatomic
reactive gas mixtures [EG94]. In the appendix, we restate how these properties are also
derived from Stefan-Maxwell-Boltzmann type equations.

(H7) The flux diffusion coefficients Cy;, k,l € S, the rescaled thermal diffusion
ratios Y, k € S, and the thermal conductivity A are C*° functions of (7,Y)
forT >0andY >0,Y #0.

(Hg) The flux diffusion matrix C' = (Cyi)x1es and the rescaled thermal difusion
ratios X satisfy the mass constraints N(C) =RY, R(C) =U" and x € v~.

(Hg) The thermal conductivity A is a positive function.
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(Hy0) For positive mass fractions, we define the matrix D by D = (1/p)Y~'C where
Y = diag(Y1,...,Y,). In this situation, the matrix D = (Dg;)g 1es is symmet-
ric positive semi-definite and its nullspace is spanned by Y = (Y1,...,Y,)*.
In particular, D is positive definite over U~ where U = (1,...,1)*.

(H11) For nonnegative mass fractions, we define ST = { k € S, Y > 0 } and
SO ={ keSS Y, =0} and we denote by T the permunation matrix
associated with the reordering of S into (ST, S%). We then have the block

structure
c++ (¢+o )

T*C’T:( 0 oo

and C% is diagonal with positive entries. In addition, C** is the flux
diffusion matrix of the mixture associated with St and defining DT by
DT = (1/p)(YF)~'C**, the matrix DT is symmetric positive semidefinite
and has nullspace RY T where Y1 corresponds to the ST mixture, that it
Y = Y(Y™*,0). Similarly, DT is positive definite over the subspace (U1)~
where UT € R"+, Ut =(1,...,1)*, and n" is the number of elements of S¥.

Note that the matrix C' is singular since CY = 0 and not symmetric in general.
Pressure dependencies of transport coefficients have not been written since p is constant.
However, the only dependency is that D is inversely proportional to the pressure p so
that pD, C' and A only depend on (7,Y). As a consequence, properties (H7)—(Hy) are
uniformly valid for arbitrary gas mixtures. We also establish in the Appendix that D
is always irreducible whereas C' is irreducible if and only if Y > 0.

Properties (H7)—(H11) are more general than the assumptions considered in [GM98]
where all mass fractions where assumed to be bounded away from zero. The situations
where the diffusion process can be represented by a diagonal matrix have also been
identified in [Gio91] and we refer to [Gio91] [EG94] and to the Appendix for more
details. From assumptions (H7)—(H11), we now deduce various properties of transport
coefficients and transport fluxes.

Lemma 4.1. For k,l € S, and k # [, the function Dy; admits a smooth extension to
T>0,andY >0,Y # 0. For k € S, the function Dy, admits a smooth extention to
{Y, Y >0, Yy >0}, and explodes like 1/ Yy as Yy — 0. In addition, we have Dy > 0,
and Dy = 0 if and only if Y; =0 for l # k and Yy > 0.

Proof. Consider a point Z such that Z > 0, Z # 0, and let Y be in the neighbor-
hood of Z. When Z; > 0, we have Y; > 0 and from (Hy;) we obtain Dy (T,Y) =
Cu(T,Y)/(p(T.Y)Yy), so that Dy (T,Y) is smooth. Assume now that Z has at least
a component such that Zp = 0. We then consider Y > 0 in the neigborhood of Z and

we define v v
y)= - k%K
V) =y

where e, £ € S, is the canonical basis of R". We have of course n(Y) > 0 and
m(Y)r = 0. As a consequence, we obtain for k # [

1

Cra(T,Y) = Crt (T, 7(Y)) = Cra (T, Y) :/0 <azckl (T, yY +(1—y)m(Y)),Y — W(Y)> dy,
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since C (T, 7(Y)) = 0 for k # . However, since Y — n(Y) = Yj(ex — 7(Y)) we now
obtain that
1
Du(ry) = S L [ o, (Y + 0 y)m).ex - n(0) )
pYi P Jo
so that Dy (T,Y) is a smooth function of (T,Y) for T > 0 and Y > 0, Y # 0, keeping
in mind that C' and 7 are smooth.

The smooth extension of Dy to {Y, Y > 0, Yy > 0 } is also obvious from
Dyx = Ckr/pYr. Moreover, the fact that Dy explodes when Yy — 0 is a direct
consequence of Cgr > 0 for Yy = 0. Furthermore, for Yy > 0 we obtain from (Hi;)
that Dy > 0 since DT is symmetric positive semi-definite. Finally, when Dy = 0,
we have e € N(D*T) and since N(D*) = RY*, we deduce that Y is reduced to
one element and the conversely. =

Note that C' and D admits generalized inverses which naturally arise in the frame-
work of the kinetic theory of gases or when investigating Stefan-Maxwell-boltzmann
equations as shown in the Appendix [Gio90] [Gio91]. We now define the thermal diffu-
sion coefficients 0, k£ € S and the partial thermal conductivity X in order to recover
the more familiar expression (2.31) (2.32).

Lemma 4.2. Define the thermal diffusion ratios xi, k € S, by

Xk = Yk Xk k€S, (4.1)
and the coefficients 0y, k € S, and p) by the expressions
RT X1
0, = — —Clk, 4.2
p ; - (4.2)
/)::)\—F%legl. (4.3)
les

Then the relations (2.31) (2.32) hold, 0, k € S, and X are smooth functions for T > 0
and 'Y > 0, Y # 0, and the partial thermal conductivity X\ is positive. In addition,
when Y is positive, we have

0 = Dixi- (4.4)

les

Proof. The smoothness of xx, k € S, 0, £ € S, and X is a direct consequence of
the definitions. From the properties of C' and the symmety of D we also deduce that
Y, Cri = YiCi, k,1 € S. Indeed, when Y, and Y; are both positive, we can write that
Cri/Yx = pDy; and Cy. /Y, = pDy, but D is symmetric by assumptions. On the other
hand, when Y, = 0 and Y; > 0, we have C; = 0 by assumptions so that Y;Cy; = Y, Cii,
and the relation is trivial when Y, = Y; = 0. Now when Y is positive, we can write
that )ZlClk = %anle so that

RT «— % ~
O =— PP = > XD = Duxi,
P ies ™ les les

which completes the proof. =
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4.2. The fundamental diffusion inequality
The following inequality is essentially a consequence of [Gio91] and plays a funda-
mental role in the analysis.

Lemma 4.3. Consider a fixed temperature T'. Then there exists a positive constant
« such that

VY >0 with (Y,U)=1, VreU~ (pDz,x) > (Y 'z, 1), (4.5)
where ) = diag(Y1,...,Yn).

Proof. Consider the quadratic form associated with the rescaled matrix

Dk = Crg, kes,
Dy = pD/ YY1, k.leSk#I

Then D is a continuous function over Y >0, (Y,U) = 1, from Lemma 4.1. Consider
now the functional (Y,z) — (D(T,Y)z, z) defined for Y >0, (Y,U) =1, ||z| = 1, and
Zke g VY = 0. This continuous functional reaches a minimum over this compact
set. Denoting by (Y™, 2™) any point where the minimum is reached, by ST the set of
positive mass fraction species at Y™ and by S” the set of zero mass fraction species at
Y™ we then have

(D(T,Y™)z™ = > Du(T, Y™z + Y Cu(T,Y™)(z})
k,leS+ keSO

Arguing by contradiction, we establish that (D(T,Y™)z™, ™) is positive. First note
that both terms are non negative from (H;;) and since ﬁkl = pDy\/YY, for k1l € ST.
Since we know that Cy,, k € S°, are positive, (D(T Y™yz™ ™) = 0 implies that
zpt =0, k € S° On the other hand, we also have Y, <. z} \/Vk = 0, and letting
2 =2y, k € ST, we then obtain

(ﬁ(T y™)a™, Z pDrizi' 2",
k,l€S+

and Y, g+ 2p = 0. When S* is reduced to one element, we then have z}! = 0, for
k € ST since there is only one term in the sum Zkes+ zpt = 0. On the other hand,
when there are more than two elements in S, we know that D is positive definite over
U~ which implies that zj* = 0, k € S*, and thus that z}* = 0, k € S*. Finally, we
have shown that ™ = 0 which contradicts ||z™| = 1 and the proof is complete. =

Note that the properties of pD—including the fundamental inequality—can also
be rewritten in terms of the flux diffusion matrix C'.

Corrolary 4.4. The flux diffusion matrix C' is such that C)) is symmetric positive
semi-definite. Moreover, for any fixed temperature T, there exists a positive constant
« such that

VY >0, with(Y,U) =1, VxeR", withYze U™, (CYx,z) > a(Yx,z). (4.6)
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In addition, for any k € S, we have Cy, > 0, and Cy, = 0 if and only if Y; = 0 for
I # k and Yy, > 0.

4.3. Uniform temperature scaling

We now focus on the global temperature dependency of transport coefficients.
More specifically, we assume a common temperature scaling for all transport coefhi-
cients. This common temperature scaling is suggested by the kinetic theory provided
that the same type of interaction potential is used for each pair of molecules.

(H12) There exists a positive function ¢(7) defined for 7' > 0 such that the rescaled
properties DO(T,Y) = pD/(T), COT,Y) = C/o(T), N(T,Y) = Ao(T),
and XY = X admit a continuous extension to 7" € [0,00], Y > 0, Y # 0,
satisfying (Hg)—(H11).

Note that ¢ = 1 is generally used in mathematics whereas various functions ¢
are suggested by the kinetic theory of gases, depending on the interaction potentials
between pairs of molecules. For a rigid sphere interaction potential, we have for instance
= T1/2. For point centers of repulsion, we have = TW=4/2v where v varies from v =
4—Maxwell molecules—to infinity and the temperature dependence varies respectively
betwen ¢ = 1 and ¢ = T'/? [FK72]. Small values of v corresponds to soft molecules
whereas large values of v corresponds to hard molecules, and for v — oo we recover
the hard sphere model. For Lennard-Jones or Stockmayer potentials the existence of ¢
is a consequence of the Mason and Monchick tables for collision integral ratios [FK72].
In addition, from definitions (4.2) and (4.3) the quantities A/(T) and pf/¢(T) also
admits a continuous extension. By a straightforward adaptation of Lemma 4.3 we
obtain the following fundamental result.

Corrolary 4.5. There exists a positive constant « such that

VI >0, VY >0, (Y,U)=1, VzeU" (pDz,z) > a o(T){(Y ta,z). (4.7)

4.4. The matrix L

The transport fluxes ¢ are naturally expressed in terms of the gradients of the
state variables T' and Y. In order to manipulate the conservation equations, we need
to express ¢ in terms of the gradients of the conservative variables h and Y [GM98|.

Definition 4.6. Define the matrix L by

o 1 711,...,/}\1” )\/Cp 0 1 —hl,...,—hn
ﬁ‘(o I )(C’x/cpT Cdyy ) \0O I ’ (48)

where iAzk = hy + RTxx/mg, k € S. Then we have

o — L€ (4.9)
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and L is such that R(L) = U™, where U = (0,U)*, and N(L) = R&.

Proof. A straightforward calculation directly yields the expression of £ and the identity
¢ = —LE&'. From this expresion, the relation

where X = (X1,...,X,)*, and the identity (Y,U) = (X,U), we then obtain that
R(L)=U", and N(L) = R¢. Indeed, we have C(dyy) z = 0 if and only if (dyy)x =0
since R(dyy) = U~ and N(C)NU~ = {0}. On the other hand, thanks to AY = X,

we have (dyy) x = 0 if and only if Az € RX, that is, if and only if x € RY. =

The following proposition is a direct consequence of classical results concerning
generalized inverses with prescribed range and nullspace [BG74] [EG94] [EGI7].

Proposition 4.7. Assume that T > 0 and Y > 0, Y # 0. Then there exists a unique
matrix L% such that LLC = £, LYL LY = L8, N(LY) = N(L) and R(LY) = R(L). The
matrix L' is a smooth function of T > 0 andY > 0, Y # 0, and L LY = LIL is the
oblique projector onto R(L) parallel to N(L).

Finally, we investigate how the diffusion flux Fj of the k*" species behaves when
Yk goes to zero. A straightforward calculation indeed yields the following result.

Lemma 4.8. The diffusion flux Fy, of the k** species can we written in the form

Fr = —diYy, — Yy, (4.10)
where O A
4 — SkELER 4.11
and
Cri Y\ -2 X,  Cik - i1 T ~
T = m—(z E) Z # + m—Xk (Z E) T + Z pDp (’Yl/ + ’Yle(T,/T)):
kojes les ke ges T les
1+k 1+£k
(4.12)
so that the nondiagonal part of the multicomponent flux Fjy vanishes for Y, = 0.

Moreover we always have dy, > 0, and d, = 0 if and only if Y; = 0 for | # k and Yy, > 0.
In particular, whenever (Y,U) = 1, dj, is positive and bounded away from zero when
0<Y, <9 forany § < 1.

4.5. The entropy conservation equation

In this section, we establish the entropy conservation equation which plays a fun-
damental role in the analysis. The existence of an entropy function is an important
property of the system [GM98]| and will often be used in order to obtain a priori esti-
mates.
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Lemma 4.9. Assume that (T,Y) is a regular solution of the flame equations and
that T and Y are positive. Then the entropy function o(h,Y) = s(T,Y) satisfies the
equation

co' 4+ (00, ) = &, (4.13)

where the dissipation rate k is given by

p gk
= MI'/T)* + = > D+ xa(T'/T)) (v +a(T'/T)) = 3 == (4.14)
k€S kes

Proof. We have o/ = (850, ¢') so that from the conservation equations we obtain
co' = (0o, —¢' +w) = —(9:0,¢) + K,
where £ is defined by
K = <((’9€a)', ¢) + (Oc0, w) = <(8§a)§’, ¢) + (Og0,w).

We now obtain that ((’9‘50, w) = R( is the entropy production rate due to chemistry
and that N .
gk
(020)¢".6) = ((9c0).9) = —(7) 4= D_ (%) Fs
keS
since dpo = (1/T) and 9y, 0 = —gi/T from Lemma 3.3. Using

(g_k)’ _ e B
T T2 my v

we obtain after a little algebra

(0F0)¢' ) = -1 WTL 52 kg,

kes mg Ve

which can be rewritten, by using the expression (2.28) of the heat flux, in the form

(I R Spes (/i) F)T' g~ B3 g,
T2 mg Y .

<(a§20)€/7 ¢> =

kes

This yields

2 / _ / 2 E’Yllc +Xk(T,/T)
o e

and finally

((00)¢',¢) = MT'/T)? Z D (v + x&(T'/T)) (v + xa(T'/T)),

kES

and the proof is complete. =
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Note that Equation (4.13) is only valid when the mass fractions Yy, k € S, are
positive. Since ((6520)5’, ¢) is the nonreactive part of the dissipation rate, the hessian
matrix may also be seen as a metric which correlates the flux ¢ and the gradient ¢/,
but this metric is singular for zero mass fractions. The entropy equation also shows
that the natural norm for multicomponent diffusion is not the H' Sobolev norm but
involves mass fractions at the denominator from (4.7).

5. FIRST PROPERTIES

In this section, we establish that each solution of the anchored flame problem can
be extended uniquely into a solution on the full line satisfying (2.38). Conversely, we
establish that the reduction to [0,00) of any solution on (—oc, 00) is a solution of the
anchored flame problem.

5.1. Preliminaries
A triplet (T,Y,c¢) such that T and Y are C?[0,00), such that T > 0, Y > 0,

Y # 0, and ¢ > 0, and which satisfies pointwise the governing equations and boundary
conditions (2.35) (2.37), will be said to be a solution of the anchored flame prob-
lem. Similarly, a triplet (T,Y,c) such that T and Y are C2[0,00) N C?[—oc, 0] and
C'(—0c,0), such that T'> 0, Y >0, Y # 0, and ¢ > 0, and which satisfies pointwise
the governing equations and boundary conditions (2.35) (2.38) and (2.37), will be said

to be a solution on the full line.

We first establish some a priori estimates for any solution of the anchored flame
problem which will be further needed.

Lemma 5.1. Let (T,Y,¢) be a solution of the anchored flame problem. Then the mass
fractions are positive Y > 0 and sum up to unity (U, Y) = 1.

Proof. Let (T,Y, ¢) be a solution of the anchored flame problem. We first deduce from
the species equations that ¢(U,Y) = 0 since R(C) = U~ and Mw € U~. This shows
that (U,Y) is constant, and this constant is equal to unity since the boundary condition
(2.36) implies (U,Y) = (U, Y*!) = 1.

Aguing by contradiction, we now establish that Y (0) > 0. We assume that there
exists k € S such that Y3(0) = 0. Then, using Lemma 4.10 and the boundary condition
¢(Y5(0) = V) + Fi(0) = 0, we deduce that

cka
dy(0)

¥1(0) =

If Y > 0, then Y is negative on an interval of the form (0,¢) with ¢ > 0, which
contradicts the assumptions that (7', Y, ¢) is a solution of the anchored flame problem.
Hence, if Y3(0) = 0, we must have Y,f = 0 and consequently we have Y}(0) = 0. By
expanding the derivative F; in (2.1) and then letting x = 0, we further obtain that

drYy = —my P,
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since N, = 0 for Y, = 0. If P, > 0 then Y}'(0) < 0 which is imposible since Y is
assumed to be a solution of the anchored flame problem. Hence we have P, = 0 at
z =0 and Y;(0) = 0.

We now introduce the set Z = { k € S, Y;(0) = 0 } and from the preceding
discussion we know that

Vk € T, Y3(0) = 0, Y.(0) =0, ¥{(0) = 0, Pg(0) = 0. (5.1)

As a consequence, any reaction creating a species S with & € Z needs at least one
species §; with ¢ € 7 as a reactant, otherwise one would get a positive production term
Pr. This shows that the mass fractions Yy, & € Z, are factorized in the production
terms wy, [ € Z. Now the mass fractions Yy, k € Z, are solutions of the system

/
o = (d(@)Y + Yim(w)) +mpwn,  kET,

where dj and 7 are defined in Lemma 4.10, and the mass fractions vanish at z = 0
with their first derivatives. However, this system has a locally unique solution by virtue
of the Cauchy-Lipchitz theorem. Since this system also admits the trivial solution,
we conclude that locally, we have Yi(z) = 0, for z € [0,¢], and £ € Z. An easy
argument then yields that Yi(xz) = 0, for z € [0,00), and k € Z, contradicting that
Yk(OO) = Yk? > 0.

We now have to show that Y > 0 over (0,0c). Arguing by contradiction, assume
that there exists a point 29 > 0 and k € S such that Yy (z9) = 0. We may also assume
that x, is the smallest point where a species vanishes. We then have Y/(zo) < 0
by construction. If Y)(z¢) < 0, we obtain a contradiction with the fact that Y is
nonnegative. On the other hand, if Y} (z() = 0, we can then argue as above and show
that Yy is zero in the neiborhood of g, contradicting the definition of xy and the proof
is complete. =

5.2. Reduction to a problem on [0, c0)

Proposition 5.2. Let (T,Y,c) be a solution on the full line. Then we have
c(&(z) — ﬁf) + ¢(x) =0, x <0, (5.2)

and the reduction of (T,Y,c) to [0,00) is a solution of the anchored flame prolem.

Proof. From the governing equations we have (Y, U) = 0 so that (Y,U) is a constant
and this constant is unity from (Y, U) = 1. From the governing equations, the quantity
c€+¢ = c€—LE is a constant over (—oo, 0], say c€—LE' = u. Since ¢’ € U~ we can write
that ¢’ = L£#(c& — u). This shows that & admits a limit as z — —oo since £(—oc) = &F
and this limit can only be zero. As a consequence, we must have u = c¢&' and we
conclude that c€ + ¢ = c&' over (0o, 0] so that the restriction to [0,00) of (T,Y,¢) is a
solution of the anchored flame problem. =

5.3. Extention to (—oc,0)
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In this section, we establish that any solution of the anchored flame problem can
be extended over (—oc,0). However, we will further need to extend any solution ob-
tained on bounded domain for a priori estimates. As a consequence, we investigate the
extension starting from any positive species at the origin and will apply this result to
both situations.

Proposition 5.3. Let Y > 0 and ¢ > 0 be given such that (Y° U) = 1, and let
€0 = (h(T',Y?),Y"). Then there exists a unique solution (T,Y) to the flame equations
over (—oc, 0] such that £(0) = £° and £(—oc) = &8, Furthermore, this solution satisfies
(5.2) and there exist are positive constants a and b such that 0 < a < T < b. In
addition, the mass fraction are positive, satisty (Y, U) = 1, and the integral over (—o0, 0]
of the dissipation rate k is finite and given by

/iﬁ; do = 0(0(0) —of = <6§0(0),§(0) . £f>> (5.3)

Proof. We have established in the proof of Proposition 5.2 that any solution of the
flame equations such that (2.38) holds must satisfy (5.2). As a consequence, any such
solution satisfies the ordinary differential equation

2 =Lz €Y, (5.4)

with initial value £(0) = £°. Now such a solution locally exists and is unique from the
Cauchy-Lipchitz theorem so that we only have to extend this solution over (—oc, 0].

Consider such a a solution over [zg,0] and, locally, the species are positive. It
is easily checked that (Y,U) = 1 so that the mass fractions are bounded. From the
govening equations, we obtain, after a little algebra, that

S Vi(hy, b - AT+ RTY. Xyl =0
keS kes |k

Consider any x; where T reaches its minimum over [xg,0]. If T(z;) < Tt then we must
either have T"(z1) = 0 when 1 € (20,0) or T'(z1) > 0 when 2y = x1, 1 = 0 being
excluded since Tf < T%. As a consequence, if T'(z1) < TF then

> Y,j(h,k (T(z1)) — ha (Tf)) + RT (1) T’%Yg > 0.

Keeping in mind that T'(z;) < T*, this yields that
Qp (T(.I‘l) - Tf) + T(.’El)y Z 0,

where ¥ > 0 is such that
Xl e —
R 22V <y
> Ky <
keS
We have thus shown that
c, T*

T>a= —,
¢y X
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so that T is uniformly bounded from below.

This method cannot be used, however, in order to derive an upper bound for T,
unless the thermal diffusion factors are small quantities. In particular, when xy = 0, one
easily shows that 7f < T < T'. For the general case ¥ # 0, we integrate the entropy
conservation equation over [z, 0]

0

(o(0) ~ )+ (0. $)(0) - (O5,8) = [ wdu

T

so that from c(¢ — &f) + ¢ = 0 we obtain that

0

¢ (0~ of — (Deo,& — 1) = ¢ (0(0) — o' — (Bea(0),£(0) — £7) — / wdu.  (5.5)

T

As a consequence, the functional ¢ — of — (Og0, & — ¢t is increasing over [xg,0] and
nonnegative by concavity. After a little algebra, we easily evaluate this functional and
deduce that

f
h? T hk;T) + 3 Vs (T, Y) < 0(0) — (90 (0), £(0) — €1,
keS kes

Using now the lower bound for T' and the expression (2.15) we get that

R Tkt
> Y,j(—— log X +/ C’”“—“dt) < b,
mp a t

keS

where b is a positive constant wich depends only on the data and on ¢°. This implies
that T' < b over [xg, 0] where b is independent of z(, and that Y} is bounded away from
0 when £ is such that ka > 0.

We now consider a maximal solution defined on (x1, 0] and we argue by contradic-
tion by assuming that x; is finite. In this situation, from the preceding estimates, and
the smoothness of the coefficients, ¢’ remain finite in the neighborhood of 1 so that
the limit £(z1) exists and also £'(x1). As a consequence, if 1 is finite, we have either
Y > 0 and the solution can be extended, contradicting the definition of x;, or there
exists k € S such that Yi(xz1) = 0. Since Vz € (z1,0], Vk € S, Yi(x) > 0, we have
Y, (z1) > 0 by construction and from (5.2) and (4.10)

When Y,f > 0, this yields Y} (z1) < 0 and we have obtained a contradiction. On the

other hand, if Y, = 0, this yields that Y} (z1) = 0 and thus that Y3 = 0 by the Cauchy
Lipchitz theorem applied to z = Yj solution of

cz = di(z)2' + zm(x),

where dy, and 7y, are defined in Lemma 4.10. We then obtain Y3 = 0 in the neighborhood
of x1, contradicting the definition of ;1. As a consequence, the solution can be extended
over the half line (—o0, 0] and the temperature and mass fractions remain positive.
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From the identity (5.5) we also obtain that the integral of the dissipation rate x
remain finite. Using now the estimate (¢, ¢) < Br where [ is a positive constant, and
¢ = —c(€ — &Y, we obtain that &€ — ¢f € H1(—00,0) and thus ¢(—oc) = &F. This now
show that

(70— " (0o 0,60 - €H) = [ w d,

and that the upper bound for T is finally controled by the data and the integral of the
reduced dissipation rate k/c. =

We can now apply this result to any solution of the anchored flame problem since
we know that Y (0) > 0.

Corrolary 5.4. Let (T,Y,c) be a solution of the anchored flame problem. Then this
solution has a unique extension over (—oo,0) such that (2.36) holds. Moreover, this
solution satisfies (5.2) and the mass fractions are positive over (—oc, 0] and the identity
(5.3) holds.

6. EXISTENCE ON A BOUNDED DOMAIN

In this section, we establish an existence theorem on a bounded domain [0, a].
In the next section, we will let @ — oo and obtain a solution of the anchored flame
problem.

6.1. Preliminaries

For technical reasons, we need to extend the domain of definition of the equations
coefficients. To this purpose, we introduce the definition

YT, it (Y,U)>1
= 1-(Y,U 6.1
lﬁL-I—MU7 if (Y,U) <1. (6-1)
n
We note that we have ¥ > 0 and (Y,U) > 1 for any Y € R". In addition, whenever
(Y,U) =1, we have Y = YT so that both properties Y > 0 and (Y,U) = 1 imply that
Y =Y. For a fixed point formulation, the transport coefficients, the thermodynamic
properties and the chemical production rates can be taken to be functions of (7', Y), and
are then defined for ' > 0 and any Y € R". In order to avoid too complex notation,
we will denote by ¢ the function (T, Y) associated with any function ¢(T,Y).

In order to obtain a suitable fixed point formulation, it is preferable to control the
temperature and thus to use (T,Y,c¢) as an unknown, rather than using the specific
enthalpy h. However, the enthalpy equation is simpler than the temperature equation
and can be integrated once, making use of the flux boundary conditions. In order to
keep both advantages, we will solve the equations in the form

¢ = (et - € - [ ut)au)
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with 7/ replaced by ¢,T" + Y es i (T)Y] and h by [ cpdu+ Y, g hYYi. That is, we
will solve the problem in the form

(cpT’ + 3 (1YY, Y')* _ <c(/Tcpda; + 3 hvi, Y)* et - /mw(u) du),
0

kes keS 0

with the backward initial conditions ¢(a) = £° with the extra relation T'(0) = T" used
as an equation for the eigenvalue c.

In order to establish the existence of a solution, we will use the Leary-Schauder
topological degree theory and the homotopy invariance of the degree. We will first
eliminate the chemistry in a first homotopy path, and then simplify thermodynamic
properties and transport fluxes along a second homotopy path. Evaluation of the
resulting degree will conclude the existence proof.

6.2. A fixed point formulation

We consider the Banach space

B=(C'0,a])""" xR, (6.2)
and the open set O C B
O={(T,Y,c)eB, T>0,c¢>0} (6.3)
We introduce the operator
K, : O—B,
defined by
K.(T,Y,c) = (t, g, e+ t(0) — Ti), (6.4)

where (t,y) are solutions of the system
* _ t * T
<5pt’ +> hkyi,,y'> =L <C(/ Gpdz + > by, u) —ct’ - T/ w(u) dU), (6.5)
keS 0 keS 0

with the backward initial conditions
t(a) =T¢, y(a) =Y". (6.6)

Note that nonlinearities are taken as functions of (7, 17) in the homotopy path and
that for 7 = 0 the chemistry source terms vanish. The extra left boundary conditions
T(0) = T" is also used as an equation for the eigenvalue c.

Proposition 6.1. The operator K, from O to B is well defined.

Proof. Consider the backward ordinary differential equation with initial condition
(t,y)(a) = (T°,Y®). This system of ordinary differential equations admits a unique
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solution from the Cauchy-Lipchitz theorem, keeping in mind that the right member is
bounded by an affine function of (¢,y) [Bou76]. =

We also have the following property which allows us to use the homotopy invariance
of the degree.

Lemma 6.2. Let B be a closed bounded set in O and let K : [0,1] x B — B be the
map defined by IC(T, (T,Y, (*)) =K. (T,Y,c). Then K is a compact map.

Proof. We establish from the definition of (¢,y) that for (7, (T.Y,c)) € [0,1] x B,
t, y, t', and ¢’ are uniformly bounded and that ¢ and g’ are uniformly Lipchitzian.
This implies that the range of K is relatively compact and that K is continuous by
uniqueness of the solution of (6.5)-(6.6). =

We now introduce the open set €2 defined by
Q={(T\Y,c) € O, [[(T,Y)lgr0,a < B, a <T < B, a <c <P}, (6.7)

where o and (3 are positive constants.

Theorem 6.3. There exists constants a and (8 such that for all T € [0,1] and a > 1,
the Leray-Schauder degree d(I — IKC;,€,0) is well defined.

In order to establish this theorem, we have to show that for a small enough and
[ large enough we have

vrelo,1,  0¢ (- K.)09). (6.8)

This will be obtained in the next section by estimating fixed points of K.

6.3. Existence of the degree

We estimate in this Section the fixed points (7,Y,¢) of K, for 7 € [0,1]. By
definition, we have T > 0, ¢ > 0, and (T,Y,c) = (t,y,c+ t(0) — T'), so that the
equations obtained from (6.5) with ¢ = T and y = Y hold and T(0) = T'. A priori
estimates are successively obtained in the following lemmas.

Lemma 6.4. Let (T,Y,c) be a fixed point of K. Then the mass fractions are positive
Y > 0 and sum up to unity (U,Y) = 1.

Proof. We first deduce from the species equations (6.5) that ¢(U,Y)" = 0 since we
have R(L*) = U~. As a consequence, (U,Y) is a constant which is unity from (6.6),
and this shows that ¥ = Y+

Step 1. We first establish that Y (0) > 0. Arguing by contradiction, assume that
there exists £ € S such that Y;(0) < 0. Then from the species equations written at
z = 0 we have ¢(Y3(0) — &) — e L ((T°(0), Y(0))Y/(0) = 0, and we also have
Y,7(0) = 0, so that from Lemma 4.10 we deduce that

c

di(0)

Y (0) = (Yi(0) - V) < 0.
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Then Y} is negative over an interval of the form (0,¢) with ¢ > 0. Over this interval
(0, €) we now have

dek, = C(Yk — ka) — T/ mkﬁk du,
0

since wy, = ﬁk, for ?k = Yk+ = 0. This shows that Y, is negative and Y}, is decreasing.
By using a forward shooting argument, we deduce that Yj remains negative, contra-
dicting the backward initial condition Yj(a) = Y;* > 0.

Step 2. We now claim that Y > 0. Aguing by contradiction, assume that there
exists a point z; and a species k € S such that Yi(z;) < 0. From the preceding
discussion and since Y (a) = Y©, we necessarily have x; € (0,a). Define now

xg =sup{ t € (0,z1], Ye(t) =0 }.

This set is nonempty since Y%(0) > 0 and Yi(z1) < 0. In addition, zq is different
from zy since Yy is Lipchitzian. Indeed, we have |Yj(z1)| < M(z1 —t) for any ¢t < x4
such that Yi(t) = 0 where M is a Lipchitz constant for Yy. Since xy # x1, we now
consider the interval (z¢,z;) where Y} is negative since Yy(z1) < 0 and Y} cannot
change of sign over (zo,z1) by construction. There exists z € (zg, z1) with Y}/(z) < 0
and a forward shooting argument now shows that Y, and Y are negative over [z, al,
an obvious contradiction with Yy (a) = Y.

Step 3. We now show that Y (0) > 0. Arguing by contradiction, assume that
Y% (0) = 0 for some k € S. Then from the species equation, we obtain that

C

dy(0)

Yi(0) = (Y(0) ~ Y§) <0

b

and since Y > 0, we cannot have Y/(0) < 0 so that necessarily Y{ = 0. From the
preceding steps, we know that (Y,U) = 1 and that Y > 0, so that Y =Y and from
(6.5) the solution is twice differentiable. Deriving the species relations and substituting
x = 0 we deduce that

dk(O)YkN(O) = *ka'Pk (0) < 0.

Since Y > 0, Y}/ (0) cannot be negative so that necessarily Py (0) = 0. We now introduce
theset Z={ k€S, Yp(0) =0} and from the preceding discussion we have

Vk € Z, Y(0) =0, Y,(0) =0, Y. (0) =0, 7P(0) = 0. (6.9)
Now if 7 > 0, any reaction creating a species Si, with k € Z, needs at least one species
S; with ¢ € 7 as a reactant, otherwise one would get a positive production term. This

shows that the mass fractions Yy, k € Z, are factorized in the production terms wy,
[ € T. Now the mass fractions Y, k € Z, are solution of the system

/

where di and 7, are defined in Lemma 4.10. However, this system has a locally
unique solution from the Cauchy-Lipchitz theorem, but also admits the trivial solution.
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A shooting argument now shows that Yy = 0 over [0,a] for any k£ € Z, an obvious
contradiction.

Step 4. We finally establish that Y > 0. Still arguing by contradiction, we
consider the first point xo such that there exists [ € [1,n] with Y;(xg) = 0. Of course
we have 2y # a since Y}* > 0. At this point, since ¥; > 0 on [0, ), we have Y/ (zy) < 0.
We cannot have Y/ (z) < 0 since Y > 0 so that Y;'(z¢) = 0 and Y;(z¢) = 0. We can now
proceed as in the preceding step to conclude that Y; is locally zero which contradicts
the definition of xy and the proof is complete. =

Lemma 6.5. Let (T,Y, c) be a fixed point of K, and assume that is has been extended
over (—oc,0) by using Proposition 5.3. We know from Lemma 6.4 and Proposition
5.3 that the species are positive so that the entropy and the dissipation rate are well
defined. We then have the entropic estimates

/0}4; di = c(o® — ob), (6.10)

o0
where

T\ 2
k=M7) + 5 0 Dk +xe(T/T)) (i +x(T/T) =7 > P2 (6.11)
k€S keS

and where we use the notation w(x) = 0 for = < 0.

Proof. Since the species are positive and we may thus use the entropy governing
equation

co' + (00, 9) =K

where the dissipation rates & is given by (6.11). We also know from Proposition 5.3 that
the integral of s over (—oo,0) is given by (5.3). Integrating the entropy conservation
equation over [0, a| thus yields

c(lo® — o) + + (( 0¢0)°, (a)) = / kdz, (6.12)

where (9,0)° = (9,0)(£°).

On the other hand, we know that (0y0)® € (MR)™ so that (0;0)° € (0, MR)~
Multiplying the species conservation equations by (9,0)° and integrating over (—oo, a
then yields

e((960)°, € — &) + (Do), (a)) = 0.

However, £¢ — ¢f € (0, MR)™ since Y® — Y! € MR from element conservation and
since h® = h. As a consequence, we have <((")£a)e,§e — &' =0 and <((")§J)e, ¢(a)) =0
and the proof is complete from (6.12). =

Lemma 6.6. Let (T.,Y,c) be a fixed point of IC.. Then there exists positive constants
« and 3 independent of a such that o < T < f3.
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Proof. We start from the entropy conservation equation
co' 4+ (0¢o, $) = kK,

that we multiply by (J;0,¢) and integrate over [0, z]. This yields the identity

L (G, )2 — (0,0, 4)2(0) + /(J””(Magg, ®) - oo’ (0. 9) ) du.

The first integral term can be bounded by

/ K (O¢o, @) du < / (c+1<8§a,q§>2)ndu < bcz-l—l/ (8§J,¢>2ﬁdu.
Jo Jo ¢

cJo

On the other hand, the second integral term can be estimated with

T’ T!
‘0/<6507¢>‘ = ‘CPT-I'ZSkYk’ —)\?4_23]“.7:,6"
keS keS

which yields, by using the definition of the species entropies sg, k € S, that

T/
|0 (00, ¢)| < bso(T)”z(\?\+Z(1+|long|+|logT\)\Yé|)
keS

T/
—1/2(y| 1
o(1)2 (A = +I;g(1+ [log Y + [log T') 7).

We now use the entropic estimates (6.10) and Schwartz inequality in order to estimate
the integral of ‘a’(&Ea, ¢>‘ By using Yi|logYx|? < 1 for 0 < Y < 1 and the
expressions (4.10) for the multicomponent fluxes, we deduce that

/ ‘a’(aga,@‘du < b<c+/ |]0gT|2f£du>.
0 0

On the other hand, by integrating the entropy conservation equation over [0, z], we

have .

clo — o) + (Ogo, ) = / K du,

J — oo

which implies that
cllogT| < be+ ‘(850, )| (6.13)

since the specific heats are bounded by positive constants. Combining these results
yields that

xT b xT
/0 ‘a’((‘)ga,(b)‘du < bc+c—2/0 (850,¢)2/<;du,
so that

(0c0,¢)> < b +g/0”<8§a, $)? K du.
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From Gronwald Lemma, we obtain
(00, $)® < be?,
and using (6.13) we conclude that
[log T'| < b,
and the proof is complete. =

It is the first time that an upper bound for the temperature is obtained in a flame
with nontrivial transport. Note also that the natural entropy production weighted
norm has been used in the proof of Lemma 6.6.

We now estimate the eigenvalue ¢ of the flame problem. In the following lemma,
we obtain an upper bound independent of a and a lower bound which depends on a.
The existence of a lower bound independent of a will only be needed when passing to
the limit ¢ — oo and is postponed to Section 7.

Lemma 6.7. Let (T,Y,c) be a fixed point of K, and assume that a > 1. Then there
exists positive constants o and 3 such that o < ¢ < (3 and 3 is independent of a.

Proof. When thermal diffusion is not included, there exists a simple way to get an
upper bound for c. Indeed, using the identity c(¢& — &8 + ¢ =7 f; wdu, we have

cZka(hk — ) — AT :Tth/.mkwkdu.
0

keS kes

Assume now that a > 1, and denote by by an upper bound independent of a of the
sum in the right member for z € [0,1]. Then either cc,(T" — T*) < by, and there is
nothing to prove, or cgp(Ti — T%) > by and a shooting argument shows that 7' > 7"
over [0, 1]. In this situation, and we may write the above equality at a point x € [0, 1]
such that T'(xz) = T'(1) — T'(0) to obtain an upper bound for c.

When thermal diffusion is included, we first note that for z > 0
clo —ob) + (Oc0, ¢) = /mf-idu > /Omn du = C(J(O) —of - (0:0(0),£(0) — §f>>
Since 7'(0) = T > T*, we deduce that there exists 6 > 0 such that for any z > 0
J—Jf—ké(aga,(b) >4 > 0.

In addition, we have (¢, ¢) < bk and (850, $)? < bk since the temperature is uniformly
bounded and since (log~y)%y < 1 for v < 1. As a consequence, we have

/0 (6, 8) + (B0, #)2) dz < be
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and from the governing equations c(¢ — &%) + ¢ = f;wdu we finally obtain

1
0

/ (Hfff%/OxwduHQ+‘é(aga,@f) dz < be.

We now use the uniform continuity of o over the compact set Y > 0, (Y,U) = 1, and
a < T < b. More specifically, there exists n such that ||&; — &l < n implies that

lo(€1) — o (&)l < d/2.
Now for x € (0, 1) we have the following alternative. Either ||¢ —¢f|| < 7 and then
o (&) — a(€Y)|| < 6/2 and the entropic estimates yields

(0co,¢)| > 0/2.

‘ 1
c

Or we have [|¢ — £f|| > 5 so that for

where (3,, is a uniform bound of || fol w dx||, we then have

T €T
le-¢ =7 [Cwaul > n
¢ .Jo
We have thus shown that ¢ > 243, /n implies that
c % inf (772, (52> <b,

so that ¢ is bounded from above.
For the lower bound, we remark that

1@ 10) < [ w@lds < Va [ 1)

and we also have |T”|?

we obtain that

< bk uniformy from the temperature bounds. As a consequence,

T - T < b\/a/ kdr < bea,
Jo
and this yields a lower bound for ¢ which depends on a. =

We now estimate the derivatives of fixed points of IC,.

Lemma 6.8. Let (T,Y,c) be a fixed point of K, and assume that a > 1. Then there
exists a positive constant (3 independent of a such that ||(T,Y)||¢s[0,q) < B and such
that ||(T,7 Y,)||H2[0,a] <p

Proof. We use the variable ¢ for convenience and from the entropic estimate and the
upper bounds derived in the previous lemmas we obtain that

INGREEY: (6.14)

et}
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On the other hand, we may use the expression (3.31) of the dissipation rate

(= ZIA(Z“Ml/f py — (Mvy, u>) (exp(MVZ‘-i, p) — exp(Mv;, u>)

Since 7x < 1, k € S, we know from (2.20) that (u, Mvd) and (u, Mv}) are bounded
from above. As a consequence, there exists b such that

|exp(p, M) — exp(p, Mv)| < bl {u, M) — (p, M)

bl

and, using now the positivity of I?i, ¢ € R, and the uniform estimates for the temper-
ature, we conclude that
> i < B

1ER

so that finally, using the entropic estimates, there exists b such that

a
7'/ |wl|? dz < b.
0

From the governing equations c¢¢’ + ¢’ = 7w, where w = 0 for z < 0, and from
0 <7 <1, we now deduce that

/ 1112 de < B,

and from Sobolev injection applied to ¢ = — L’ we obtain that ||¢|| < § uniformly over
(—o00,a] and from ¢’ = —L¥¢ we further obtain that ||¢’|| < B uniformly over (—oo, al.
Finally, from the governing equations, we deduce that ||¢’|| is uniformly bounded and
upon expanding the derivatives we conclude that ||£”]| is also uniformly bounded. The
L estimates for ¢ and ¢ and the H?[0, a] estimates of derivatives are similar. =

6.4. Calculation of the degree

From the homotopy invariance of the degree, we have

d(I — K1,9,0) = d(I — Ko, Q.0) (6.15)

’

and the map g no longer involves chemistry source terms. In order to evaluate this
degree, we need a second homotopy in order to simplify transport properties and ther-
modynamics.

We introduce the operator

defined by
Ho(T, Y, ) = (L e+ 1(0) = T, (6.16)
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where (t,y) are solutions of the system

<(‘ t—i—thyk ')*:(ET)ﬂ<c</ TdT+thyk, ) cff’7>, (6.17)

keS keS

with the initial conditions
t(a) =T°, y(a) =Y*. (6.18)
In these expressions, we have used the notation
Cpp = TCpi + (1 = 7)5p,

X =7A+ (1—7)A,
T =rC+(1- T)E(I(Y, Uy - Y®U),

%;c- = Tik:

my = 1tmy + (1 — T)mo,

(ZYk R + / 7 ), Yf>*,

keS

where ¢, X, D, and my are fixed positive constants such that

=1

A
D
and where £7 is taken as in Definition 4.8 in terms of 57, X", XT, ¢y, and m7.
The idea behind this new homotopy is to obtain trivial thermodynamics and trivial
transport fluxes for 7 = 0. One could also simultaneously modify the chemistry source
terms, thermodynamic properties and transport properties in a single homotopy. How-
ever, it requires changing the equilibrium temperature boundary condition which de-
pends on thermodynamics—and simultaneously to change the cold temperature bound-
ary conditions, in order to prevent any temperature crossings associated with modified
equilibrium temperatures. Using two distinct homotopies somewhat simplifies the pre-
sentation.

Proposition 6.9. The operator H, : O — B is well posed and the degree d(I—H.,,€2,0)
is well defined for T € [0,1] and a > 1. Moreover, for any closed bounded set B in O,
the map H : [0,1] x B — B defined by ’H(T, (T,Y, (*)) =H.(T,Y,c), is compact.

Proof. It is exactly similar to the preceding case up to minor modifications. For
instance, the entropic estimates now reads

/:ﬁ;dx:c<a(fe’7)— &-fT <ao_£e‘r ), €67 - &-f,‘r>>’
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where
Te

ardz). Y)

e = (Y ve(n +_/

kes 0

since &7 does not anymore coincide with the maximum of ¢ on the conservation
simplex, the specific heats being modified along the homotopy path. =

From the homotopy invariance of the degree, we now obtain that

d(I — K1,9Q,0) = d(I — Hp,Q,0) (6.19)

b

and a straightforward calculation making use of (y',U) =0 yields that the map Hq
has the simple structure

Ho(T,Y,c) = (tc, Yer ¢+ £o(0) — Ti), (6.20)

where . and y. are given by

te(x) =T+ (T° — T exp(c (z — a)E,/N) (6.21)

b

ye(z) = Y+ (Y = Y exp(c (z — a)ey/N), (6.22)

and only depend on c.
We can then define a third homotopy by introducing the operator

A, O — B,

defined by
A-(T,Y,c) = (th, TYe, €+ t.(0) — Ti>.

One may easily check that A, is well posed and that the degree d(I — A,,2,0) is well
defined. We thus obtain that

d(I — K1,9,0) = d(I — Ao, Q,0),

so that from

Ao(T,Y, ¢) = (0, 0, ¢+ t.(0) Ti)
and the multiplicative properties of the degree, we have
d(I — K1,Q,0) = d(T" — .(0), (o, §),0).
From (6.21) we have
t.(0) = T' + (T° — TY) exp(—caz,/N),

so that finally
d(l — K£1,9,0) =1,
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since @ < T < T' < T® < B and there exists a solution to the problem posed on a
bounded domain.

7. EXISTENCE OF SOLUTIONS

In this section, we pass to the limit ¢ — oo and obtain a solution of the anchored
flame problem. A first step is to derive a lower bound for the flame eigenvalue ¢ which
is independent of a. Another important point is to investigate the behavior of the
solution near the equilibrium state £°.

7.1. Uniform estimates for ¢

Lemma 7.1. For 0 < § < 0 — o there exists a unique point x5 such that

/ kdxr = dc.
T

Proof. The function ¥ defined on (—oc, a] by

W) = / :; du,

is strictly increasing since & is strictly positive over (—oo, a]. Arguing by contradiction,
we indeed note that for zo < 0, k(z¢) = 0 implies that ¢(z¢o) = 0 and thus that
£(zo) = &! from (5.2) and the Cauchy-Lipchitz theorem yields &(x) = & for any x < 0,
contradicting T # T'. Similarly, for zo > 0, k(x9) = 0 implies that &'(z¢) = 0 and
((xp) = 0. Since Y (z9) > 0, we deduce from ((zo) = 0 that &(xp) is an equilibrium
point and from the Cauchy-Lipchitz theorem we obtain that £(z) = &(x) for 0 < x < a,
contradicting T'(0) = T # T¢ = T(a). =

We now show that &(x) is close to £¢ when the integral of the dissipation rate s
over the interval [z, a] is small, in particular for = € [z, a).

Lemma 7.2. There exists a constant 3y such that for any a > 1 we have

vl Je@ -’ < ([ ntwan) " (1)

Proof. We first note that there exists o such that we have uniformly
e - €12 < B0 — 0~ ((Be0)", 6"~ ©)),

since 7' is uniformly bounded and (Y,U) = 1. Since (9,0)° € (0, MR)" we easily
obtain, by combining the conservation equations and the entropy equation, that

c(a' — <(650)e,£>’) + (<8§0, ¢) — ((9:0)", ¢>>I = K. (7.2)
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We multiply this equation by ¢ = <8£a, ¢>> — <(8£a)e, q5> and integrate over [z, a]. This
yields

—1y? = / K du — c/ (o' ((850)975'» Y du.

However, we can now estimate

/ ‘a — ('“)ga Hv,b‘du < ﬁ/fidu

so that by using || < ¢+ (1/¢)? we obtain

P? < ﬁC/maﬁ;du—Fg/:wQﬁdu.

Using a (backward) generalized Gronwald Lemma [Bou76] we now obtain

0 =|(90.0) ~ (@) 0)| < pe [ wau

On the other hand, by integrating (7.2) over [z, al, we get

c(ae—a—<6ga §> - = /

which yields that

7t o (o).~ &) < (5 [wtwyan)”

which completes the proof. =

We now estimate more closely the integral of the dissipation rate x when £ is close
to £°. This result will then be applied over the interval [z, a.

Proposition 7.3. There exists positive constants e; < T® — Tt and (31 such that for
any a > 1

Vo € (—o0,al, 1€(x) =& <en = / k(u)du < Pir(x).

Proof. We define v° as the unique equilibrium point in the conservation maniflod
£+ (0, MR). By construction, we have (J;0)(v°) € (0, MR)~ and by combining the
conservation equations and the entropy equation we easily obtain that

a

(0"~ 0 (90 ().~ ©)) + (90 (0%) — (9g0). 6) = / () du.

T
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We can rewrite this identity in the form

c(a(ne) — o — {(D0)(0°), 0° — .5>) n c(ae — o (v%) — ((9e0) (v%), £° — ne>)
. (7.3)
+{(0) () = (0c0). ) = [ la)du

so that by using (9,0)(0°) € (0, MR)™ and { — v € (0, MR), and taking into account
the concavity of o, we obtain

a

¢(o(0%) — o) + <(650)(ue) — (0¢0), <;S> > / k(u) du. (7.4)

J T

On the other hand, when ¢ is close enough to £°, say ||{(z) — £°|| < €1, we can write
that

allo” — €|* < o(v%) (&) < Blo° €Il
and
(9e0(0%) — 00.9)| < B(I0® — €2+ 19°).
so that
(9c0(6) = 00, 9)| < B0 (6%) = 0(&) + (920)E', 9))

Finally, using the local stability inequality of Proposition 3.11, we deduce that there
exists (31 such that

[t du < punta),

for ||{(z) — £°]] < €1 since ¢ is bounded by above independently of a for a > 1 and the
proof is complete. =

By using Proposition 7.3, we now obtain that the exponential decay of the integral
of the dissipation rate k near equilibrium.

Corrolary 7.4. Let € such that 0 < ¢ < T® — T' and define z. > 0 to be the largest
x such that ||£(x) — £°|| = € and ||&(t) — £°|| < e for all t € [x,a]. Then there exists a
constant 0 such that for any a > 1

Ve € (0,€e1], Vz € [z,al, /: k(u)du < </za k(1) du) exp(—0(z — 2z)). (7.5)

€

We know obtain a positive lower bound independent of a for the flame eigenvalue
c.

Theorem 7.5. There exists a positive constant « independent of a such that

a < e (7.6)

Proof. We consider §; small enough such that

\//370%1 S €1,
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so that for 6 < 61 we have 2., < x5, from Lemma 7.2. We then consider the point x5, /o
which necessarily belongs to the interval (zs,,a). Using the exponential estimates of
Corollary 7.4 valid over [z, ,a] we obtain that

co1/2 = / kdr < (0°— o' )cexp(—0(ws, /2 — 2¢,))- (7.7)
To1/2

We also have

VBo(Vo1 — V/61/2) < [l€(ze,) — &Nl (s, 72) — € < N1€(zer) — Easy )

and letting oo = /01 (1 — 1/v/2)? we obtain from the entropic estimates

L5y /2 2 ZL5y/2
o< ([T IeNa) < o) [N < aclass - ),

€1 €1

where 3y is independent of a. This now yields that
o1 < 2(0° — af) exp(—al/c),
where a; = da/f2 and the proof is complete. m

Note that in Proposition 7.3 and Theorem 7.5 we have only used the local version
of the stability inequality concerning the chemical dissipation rate (.

7.2. Convergence towards equilibrium

Theorem 7.6. There exists a, 0 and € independent of a such that

Va>a  Vrela], [{(z) £ < Cexp(-oa), (7.8)

Proof. In order to establish exponential convergence towards equilibrirum, we only
have to establish that for a given € > 0, z. remains bounded independently of a. Let
0 < € < e;—where ¢ is determined later—and define age = &(0® — o) + 1 where ¢ is an
upper bound for the eigenvalue c. Then, for a > ag, there exists necessarily xy € [0, ag]
such that k(zp) < e. Since we have

(¢, ¢) < bk,

uniformly over (—oo,a] with b independent of a, we deduce that ||¢(xq)]|* < be. Since
Q& —¢°) = Q¢ — ¢ = —Q(¢) where Q is the orthogonal projector onto (0, MR)~, we
can further use the global inequality of Proposition 3.15. This yields that o(v°) o < e,
so that

I — €]* < Be.

In addition, we can also write that [[v® — £°|| < By/€ since Q(§ — £°) = —Q(¢). As a
consequence, we obtain

Hf(mo)*feHQ < [se,
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where 3 is a constant. Assuming now € < €1/(1 + 3) we obtain that

/aff du < Pir(zo) < Pie.

J o

Further assuming fie < ¢(0® — af), then zg, /. can be defined as in Lemma 7.1 and we
have the estimate g, /. < ao. Letting

4

( &1 c(o®—oh) gel)
1+ 3 I " BB

7_1.
6—21nf

we finally obtain from Lemma 7.2 that z: is well defined with € < ¢; and that
Ze S ag = (Q(O'e *O'f) + ].)/g

Since z¢ is bounded independently of a, we now obtain from Corrolary 7.4 that

a

VYa > ag, Vx € [0, al, / kdu < Bexp(—0x),
x
and the proof is complete using again Lemma 7.2. =

Theorem 7.6 is the only place where the global inequality of Proposition 3.15 is
used.

7.3. Passage to the limit a — oo
Theorem 7.7. There exists a C'°° solution to the anchored flame problem.

Proof. We consider a sequence of solution (7% Y, ¢*) of the anchored flame problem
over the domains [0, 7] for € N\{0}. From the a priori estimates derived in Sections 5,
6 and 7, we can extract a subsequence converging towards (7Y, c) on every compact
in the C? topology. We then know that « < T < 3 and o < ¢ < 3, where o and 3
are independent of 4, and that Y > 0, (Y,U) = 1. From the uniform L? estimates of
derivatives, we easily deduce that 77, Y’, T” and Y are in L? and from the exponential
estimates, we also deduce that £(o0) = £°. As a consequence, we conclude that (T, Y, ¢)
is a solution of the anchored flames problem and from Lemma 5.1 we also obtain that
Y > 0. Finally, the C® regularity follows from the C? regularity and the governing
equations. m

Note that the estimates obtained in Section 6 on a bounded domain [0, a] could
also be conducted directly over [0, 00).
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APPENDIX : Generalized Stefan-Maxwell -Boltzmann equations

The kinetic theory of gases yields explicit expressions for transport fluxes but not
for transport coefficients. Transport linear systems have indeed to be solved in order to
evaluate transport coefficients in gaseous mixtures. In this Appendix, we focus on the
simplest linear systems associated with multicomponent diffusion coefficients and relate
these systems to the so called Stefan-Maxwell-Boltzmann equations [Gio91] [EG94].

A.1 The matrices A and D
The transport linear systems associated with the multicomponent diffusion coeffi-
cients D are the n linear systems of order n indexed by [, [ € S,

Az! =y,
ey~ (41)

where A € R™" and z!,y', Y € R". The matrix A is given by

( XX
Ay = . kes.
kk ZEZS D € o,
L7k (A.2)
X. X
Ag = — D’“ L kileS, k#1L
\ kl

where Dy, is the binary diffusion coefficient for the species pair (k,l) when first order
diffusion coefficients are considered [Gio91]. In this situation, the binary coefficients Dy,
k.l € S, only depends on pressure and temperature Dy; = Dy (T, p). More generally,
for more accurate multicomponent diffusion coefficients, the quantities Dy, k,l € S,
are obtained as Schur complements from transport linear systems of size larger than n,
and are then function of T', p, and Y, but have similar properties [EG94].

The right members 3!, [ € S, are given by

! Yy

=0 — —
Yk kl Z Y.

. kes, (A.3)
meSs -~ m

where d,, is the Kronecker symbol. Finally, the diffusion coefficients Dy, k,l € S, are

evaluated by
Dy = zk, k,leS. (A.4)

The relations (A.1) can easily be rewritten in terms of the species diffusion veloc-
ities Vi, = — > ;e g Dy and yields

X5 X XX
L= Vi — Vi kelsS, A5
14k 14k



termed Stefan-Maxwell-Boltzmann equations in the literature. These equations have
to be completed by the mass constraint

> ViV =0. (A.6)
keS

as the transport linear systems (A.1). However, although one may work with diffusion
velocities and system (A.5), it is more elegant and more efficient to work directly with
the transport coefficients [Gio91].

The matrix A is easily shown to have the following properties [Gio91] [EG94] [EG97].

Lemma A.1. Assume that the molar masses my, k € S, are positive constants,
that the coefficients Dy; are positive and symmetric, and that the mass fractions Y
are positive. Then A is symmetric positive semi-definite, N(A) = RU where U =
(1,...,1)*, R(A) = U™, and y* € R(A), I € S. Moreover, A is irreducible and is a
singular M matrix.

The matrix D is then easily related to a generalized inverse of A with prescribed
range and nullspace [Gio90] [Gio91] [EGY94] [EGIT].

Proposition A.2. Keep the assumptions of Lemma A.1. Then the n linear systems are
well posed and the matrix D is the generalized inverse of A with prescribed range Y~
and nullspace RY . More specifically, D is the the unique matrix such that DAD = D,
ADA = A, R(D)=Y  and N(D) =RY. As a consequence, the matrix D is positive
semi-definite, we have AD =1 —Y®U/(U,Y), DA =1—-UQY/(U,Y), and for any
positive a and b with ab(U,Y)? =1 we have D = (A +aYQY) ! — bUKU.

A.2 The matrices [' and C

When some mass fraction are vanishing, the diffusion velocities are no longer de-
fined and we have to consider the mass fluxes [Gio91]. As a consequence, we introduce
the matrix I' defined by

1 m X;

I = —— —, k€S,
p M 15 Dy
1#k (A.7)
1m X
Fkl: 7__—k: k,lES7 k#l,
p my Dy

which satisfies A = I'(p)) [Gio91] . The transport linear systems associated with the
flux diffusion coefficients C' are the n linear systems of order n indexed by I, [ € S,

{Fﬂ:yu (A.8)

teU™,
and the flux diffusion coefficients Cy;, k,1 € S, are evaluated by
Cr = ’7‘2 k.l esS. (Ag)
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One can also write the analog of equations (A.5) for multicomponent fluxes v = ~T'F
with the constraint F € U~ [Gio91].

Lemma A.3. Assume that the molar masses my, k € S, are positive numbers, let
Dy be positive numbers defined for k,l € S, k # |, and symmetric, i.e., Dy; = Dy, for
k # 1, and assume that Y > 0 and Y # 0. Then the matrix I' is such that N(I') = RY
and R(I') = U~ and is a singular M-matrix.

Proposition A.4. Keep the assumptions of Lemma A.3. Then the n linear systems
(A.8) are well posed and C' is the group inverses of T', that is, C' is the generalized inverse
of I with prescribed range U~ and prescribed nullspace RY . The matrix C is thus the
unique matrix such that CI'C = C, I'CT' =T, R(C) =U " and N(C) = RY. We also
have CT =TC =1-Y®U/(U,Y) and for any positive a and b with ab(U,Y)? = 1 we
have C = (I' + aY®U)™! — bY®U. Finally, when all mass fractions are positive, we
have the identity

C = pYD. (A.10)

The next proposition gives the behavior of the matrices I' and C' when some of the
mass fractions are vanishing [Gio91] [EG94].

Proposition A.5. Keep the assumptions of Lemma A.3 and define ST = { k €
S, Yy, >0}and S={keS, Y, =0} Let T be the permunation matrix associated
with the reordering of S into (ST, SY). We then have the following block decompositions
for C' and T’
++ 0
T*OT = (C ¢ )

++ O
0 o T*FT:<F ) >

where C°° and T'°C are diagonal with positive entries and inverse of each other, and
C*+ and 't are exactly the matrices that would be obtained by considering only
the ST mixture of nonzero mass fractions. In particular, the matrices CT+ and I'T+
satisfy the properties of Lemmas A.1 and A.3, and Propositions A.2 and A.4, for the
submixture ST.

A.3 Irreducibility and diagonal diffusion

In this section, we investigate the irreducibility of multicomponent diffusion ma-
trices and the diagonal diffusion problem. Irreducibility is directly deduced from the
assumptions of Section 4.

Proposition A.6. The flux diffusion matrix C' is irreducible if and only is Y > 0 so
that the diffusion matrix D is always irreducible.

Proof. From Proposition A.4 we already know that when some mass fractions are
vanishing, the matrix C' is reducible. As a consequence, we only have to establish that
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the converse is true. We assume that C' is reducible so that there exists a permutation
matrix Il such that )
C(L(l Ca

H*CH - < 0 Cbb ) ,

where the superscripts ¢ and ® are used to denote the reordering associated with II.

Since R(C) = U™, we deduce that R(II*CII) = U~ so that R(C**) C (U®). This
shows that C'*® is singular so that there exists ® # 0 such that C**z® = 0. Introducing
the vector z = (2%,0)*, we obtain that II*CTlz = 0 which yields Iz € N(C) = RY.
We have thus shown that II(z% 0)* = @Y and « cannot be zero since z® # 0 so that
finally Y = (1/a)IT*(z*,0)* and some mass fractions are vanishing. =

We have shown in Proposition A.6 that the matrix C'is irreducible when Y > 0 and
this matrix cannot a fortiori be diagonal. However, we may ask for a weaker property
since the physical vectors—the diffusion driving forces—always lie in the hyperplane
U~. Only the property of being represented by diagonal matrix over U~ is needed.
Moreover, a diagonal diffusion model is only interesting if the fluxes are expressed in
terms of the mass fractions gradients which are the natural species variables. We have
thus to investigate when the matrix C' (dyy) is diagonal over U~. However, since

we have (dyv)r = Az/(Y,U) for x € U~ since A*U = U. It is thus equivalent to
investigate the case where C'A is diagonal over U™ and this problem has been solved
in [Gio91].

Proposition A.7. The matrix C'A coincides with a diagonal matrix on the subspace
U~ if and only if the numbers Dy, k,l € S, k # 1, are equal. In this situation we have

C’A:D(I— %) (A.12)

where D denotes the common value of the pDy;/ (U,Y) for k #1 and Z = A~1Y.
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ERRATUM

Plane Laminar Flames with Multicomponent Transport and Complex Chemistry

On page 13
o(h,Y)=0(E(T,Y)) = s(T,Y).
On page 17
c(Y,u) + (F,u) =0.
On page 18
E—l(hf,ff) CH{(T,Y); a<T,Y>0,(Y,U)=1},

On page 28
dn — Ck m
T WUy my

(3.2)

(3.25)

(4.11)

C Y, _ Y! Cup _ Y 1T’ ~
me= = ()T Y e (s )T o+ Y Dk m(T/T)),

Mk es ™ es Mk es ™ leS
17k 17k
On page 29
(920)€', ) = (Do), d) = (l)'q -3 (%Y 7,
e & T T)7"
keS
On page 32 N
f f / Xk 5 f _
¢ Yi(hy, — hy) — AT +cRTZm—kYk = 0.
= kES
On page 35

. and h by [ epdu+ Y, g hi(0)Ys. That is ...

o6

(4.12)



(cpT' + Z hi (T)Y, Y’>* = LF <(‘</ cpdr + Z hi(0) Yy, Y>* — et /mw(u) du),
0

keS keS

<5pt’+zhky;2:y> —£ﬂ< </de$+zhk i, u) —CSf—T/Ome(U)dU>a (6.5)

keS kesS

On page 39

|0 (90, 4)| = A—+Z Sk+R )}"k

TI
Cp 7 + Z s,Y,
keS

On page 40
T 0
c(agf)-|-(8£a,q5>:/ K,duZ/ H,du:c(a(())—a —<850 §>>
On page 41
1 T
2 /0 (H&—&f—E/OwduH2+E<(9ga,¢)‘2) dz < be.
a a 1/2
T@-10) < [ 1T < va( [ TP
Jo Jo
a 1/2
T - T < bﬁ(/ﬁdﬂ:) < by/e/a,
Jo
On page 43
<(° t—i—thyk '>*:(ET)'1<(:</ TdT-I—th YUk, Y ) c{f’7>, (6.17)

keS kesS

CT=rC+(1- T)E(m?, U — 17®U),
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Tf

b = (Z v (hi (0) +/E;kdx), Yf)*,

= 0
On page 44
T* N
o = (Z A () +/Ekadx), Ye> :
= 0

On page 50 (Missing references)

[BL92] J. D. Buckmaster and G. S. S. Ludford, Theory of Laminar Flames, Cam-
bridge University Press, Cambridge,( 1982).

[HCC53] J. O. Hirschfelder, C. F. Curtiss and D. E. Campbell, The Theory of Flames

and Detonations, Fourth International Symposium on Combustion, (1953)
190-210.

o8



