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We investigate a system of partial differential equations modeling ambipolar plasmas.
The ambipolar — or zero current — model is obtained from general plasmas equations
in the limit of vanishing Debye length. In this model, the electric field is expressed as
a linear combination of macroscopic variable gradients. We establish that the governing
equations can be written as a symmetric form by using entropic variables. The corre-
sponding dissipation matrices satisfy the null space invariant property and the system
of partial differential equations can be written as a normal form, i.e. in the form of
a symmetric hyperbolic-parabolic composite system. By properly modifying the che-
mistry source terms and/or the diffusion matrices, asymptotic stability of equilibrium
states is established and decay estimates are obtained. We also establish the continuous
dependence of global solutions with respect to vanishing electron mass.
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1. Introduction

Tonized gas mixtures — or plasmas — with chemical reactions are related to a wide
range of practical applications such as laboratory plasmas, high-speed gas flows or
atmospheric phenomena. This is a strong motivation for investigating the structure
and properties of the corresponding systems of partial differential equations.

The equations governing high density low temperature plasmas can be derived
from the kinetic theory of ionized gas mixtures. Different systems can be obtained
depending on the various characteristic lengths and times of the phenomena under
investigation. Assuming that there is a single temperature in the mixture — this is
the case for numerous practical applications — the corresponding governing equa-
tions are derived in Ferziger and Kaper® and Giovangigli and Graille? for general
reactive polyatomic gas mixtures.
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The ambipolar approximation is often used in the modeling of laboratory and
space plasmas and is obtained for vanishing Debye length.?1” The corresponding
model is a quasi-neutral model where the conduction current is set to zero. In
this approximation, there is no magnetic field and the (internal) electric field is
eliminated through the use of zero current constraint. The electric field can then
be expressed in terms of macroscopic variable gradients and the resulting transport
fluxes involve new effective ambipolar transport coefficients.

The governing equations for reactive ionized gas mixture in the ambipolar limit
constitute a second-order quasilinear system of conservation laws. The asymptotic
stability of equilibrium states for this quasilinear system of partial differential equa-
tions is by itself an important question. This system, however, also depends on nu-
merous parameters such as thermal conductivity and chemical reaction constants.

One of these parameters, often used in the physical modeling, is the electron
mass, which is usually assumed to be zero. In order to investigate this limit, the
dependence of the system coefficients on the electron mass must be clarified since
electron diffusivities become infinite as the electron mass vanishes. In order to do so,
we explicit the dependence of multicomponent diffusion matrices on binary diffusion
coeflicients and establish the smoothness of the system coefficients with respect to
the electron mass.

Next we consider an abstract system of conservation laws depending smoothly
on a parameter. We investigate symmetrizability, asymptotic stability of equilibrium
states, and continuous dependence of solutions with respect to the parameter. We
first establish continuous dependence of solutions locally in time and then globally
in time around equilibrium states under appropriate norms. Decay estimates are
also established globally with respect to the parameter.

We then apply these results to the system of partial differential equations mo-
deling ambipolar plasmas. We first establish that the system can be written as a
symmetric form and admits an entropy in the mathematical sense.'®'4 The re-
sulting dissipation matrices are shown to satisfy the null space invariance property
introduced by Kawashima.'® The system of partial differential equation is next
written into a normal form, that is, in the form of a symmetric hyperbolic—parabolic
composite system with two hyperbolic components, with smooth dependence of the
system coefficients on the electron mass.

The structure and properties of the equations in the ambipolar limit are first
insufficient to establish asymptotic stability. This problem, however, is shown to be
artificial and due to the lack of dissipativity properties associated with the electric
charge equation, which must guarantee that the charge remains zero for physical
solutions. Two modified forms are then introduced for the system of governing
equations, i.e. such that regular physical solutions coincide. These reformulations
guarantee asymptotic stability and continuous dependence of global solutions with
respect to the electron mass.

One can first modify chemistry production rates in the direction of the charge
vector and orthogonally to chemical reaction vectors. This yields a consumption
term in the charge equation ensuring enough dissipativity. A second modification,
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which has interesting numerical consequences, consists in modifying the diffusion
coefficients in the direction of the dyadic product of the charge vector.

Our paper is organized as follows. In Sec. 2, we present the governing equation
for reactive ionized gas mixtures in the ambipolar limit. In Sec. 3, we investigate
the dependence of the system coeflicients on the electron mass. Symmetrization
and local existence for an abstract system depending on a parameter is considered
in Sec. 4. Global existence around equilibrium states with continuous dependence
on a parameter is established in Sec. 5. Symmetrization for the quasilinear system
modeling ambipolar plasmas is obtained in Sec. 6. Finally, in Sec. 7, we establish
asymptotic stability of equilibrium states for ambipolar plasmas with continuous
dependence on the electron mass.

2. Ambipolar Reactive Gas Mixtures

We consider a reactive ionized gas mixture composed of n® chemical species in the
presence of an electric field. The general governing equations — derived from the
kinetic theory of gases — can be split between conservation equations, transport
fluxes, thermodynamics, chemical production rates, and are completed by Maxwell’s
equations for the electric field.>? The full system of partial differential equations has
a complex structure and is out of the scope of the present paper. These equations
are simplified here in the ambipolar — or zero current — approximation where the
conduction current vanishes.

2.1. Conservation equations

We denote by & = {1,...,n°} the species indexing set, n° the number of species, py
the mass per unit volume of the kth species, v; the number of mole per unit volume
of the kth species, 7 the molar charge of the kth species, and mj the molar mass
of the kth species so that p;, = mp7y:. In contrast with previous work,!! we will
use molar quantities like (71, ...,7ns) in order to describe the state of the mixture.
This molar formulation is, of course, strictly equivalent to a mass formulation using
mass densities like (p1,...,pns) because the species mass my, k € &, are strictly
positive. However, we will ultimately investigate the asymptotic limit of vanishing
electron mass, and, therefore, we need to work in a molar framework.
The mole conservation equation for the kth species reads

6t7k+8x'(7kv)+ax'fk:wk7 k€67 (21)

where v is the macroscopic velocity of the mixture, F}, the molar diffusion flux and
wy the molar production rate of the kth species. Bold symbols are used for vector
or tensor quantities in the physical space R? so that for instance 8x = (01, 02, 03)*.

In the absence of magnetic field, the momentum conservation equation can be
written in the form

Oc(pv) + 0x - (pv @ Vv +pll) + 9% - II = ¢E, (2.2)
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where p is the pressure, I the unit tensor, IT the viscous tensor, ¢ the total charge
per unit volume, and E the (internal) electric field.
Finally, the energy conservation equation reads

1 1
Oy <5—|—§pv-v>—|—8x-((8+§pv-v—|—p)v>+8x-(Q+H-V)

= (¢E+]j)-E, (2:3)

where £ is the internal energy per unit volume, Q the heat flux, and j the conduction
current vector. In the following, the (internal) electric field is eliminated from the
governing equations by using the ambipolar constraint.

2.2. Transport fluxes

The molar diffusion flux Fg, k € &, can be written in the form

szykvk, kEG, (24)
where the diffusion velocity of the kth species Vi is given by
Vi = _ZDkl(dl +X18x IOgT)7 ke 6, (25)
€6

and where the diffusion driving force dy reads
1
d, = ]_?(8xpk — Y E). (2.6)

In these relations, Dy, k,l € &, are the multicomponent diffusion coefficients, xy,
k, € &, the thermal diffusion ratios, and T the absolute temperature. The expression
of the heat flux is

Q=—NT+ > (pxk + Ve Hi) Vi, (2.7)
kes
where Hj is the enthalpy per unit mole of the kth species. Finally, the viscous
tensor is given by

II=—k(0x-v)I—1S, (2.8)

where S is the usual strain symmetric traceless tensor

2
S = 0xv + Bxvt — (9 V)L

Remark 2.1. In the presence of magnetic fields, the transport fluxes in multi-
component gas mixtures are nonisotropic.?>'° In this situation, the viscous tensor
involve all symmetric tensors constructed from S and the antisymmetric rotation
tensor associated with the magnetic field. More general structure for the stresses are
also obtained in field-dependent media as in electrorheological fluids investigated
by Rajagopal and Ruzi¢a,'% in ferrofluids investigated by Eringen and Maugin,? or
in granular materials investigated by Massoudi and Boyle.'®
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2.3. Zero current constraint

In ionized mixtures, there is a Coulomb screening by mobile charges over distances of
the order of the Debye length. For small Debye length, the mixture can be considered
as quasi-neutral, so that ¢ = 0, although the electric field is nonzero. In the absence
of external electric field, and for small Debye length, it is also natural to assume that
1,2.17 g6 that the conduction current j
vanishes. This is the origin of the terminology ambipolar and this approximation is
consistent with the charge equation

positive ions and electrons diffuse as a team

8tq+8x'(qv)+ax'j:0-

In other words, the (internal) polarization electric field E insure that the conduction
current j vanish. In this situation, provided that the initial charge is zero, we recover
that the charge ¢ remains zero at all time.

We must now eliminate the electric field E by using the zero conduction cur-
rent constraint. The conduction current j = Zke@ w  Fr = Zke@ », Y, Vi can
conveniently be written in the compact form

j= <Z,V>,

where z = (21,...,2p)%, 2k = Y2k, K € S, V= (Vy,..., V)%, and (-, -) denotes
the scalar product between quantities in R or (R?)™. On the other hand, thanks
to isotropy of diffusive processes, the relations expressing the diffusion velocities can
be recast in the vector form

E
V=-D <d0 +X8xlogT+zE> ,

where d° = (dY,...,d%)%, d? = (Oxpk)/p, k € &, and x = (x1,---, Xns)®. There-
fore, the constraint j = 0 implies that

E  (2,D(d° + xOxlogT))

p (2, Dz)

Defining the square matrix D= (lA)kl)kyl by

~ Dz® Dz
D=D— ——— 2.9
R (2.9)
it is readily seen that
V = —D(d” + x8y logT), (2.10)

ie. Vi=—> s ﬁkl(d? +xilogT), k € &. These expressions now guarantee that
the conduction current j vanishes independently of the state variables and their
gradients.
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2.4. Thermodynamics

The pressure p, the mass density p and the charge per unit volume ¢ can be
expressed as

p=Y_ RTw, p=Y M, 4= Y %%,

keS ked kes

where my, is the mass per unit mole of the kth species, s the charge per unit mole
of the kth species, and R the perfect gas constant. The internal energy £ and the
enthapy H per unit volume can be decomposed into

SZZ%Eh HZZVkHlm

ked ke&

where Ey and Hy = Ej + RT are the internal energy and the internal enthalpy per
unit mole of the kth species and T the absolute temperature. The internal energy
E), can be written in the form

T
Ex(T) = Ef —|—/ Cyi(T)dr,
Tst

where E}* = Ejy(T*") is the formation energy per unit mole of the kth species at the
positive standard temperature 7" and C, j, is the constant-volume molar specific
heat of the kth species.

The entropy S and Gibbs function G per unit volume can be expressed in terms
of the species entropies per unit mole S, k£ € &, and Gibbs functions per unit mole
Gk, k € 6, from the relations

SZZ’ykSk, QZZ’Yka7

ke® ke6

where
T
suTon) =i+ [ L0 ar - piog (1),
Tst T Yy

S5t is the formation entropy at the standard temperature 7%° and standard pressure
P, 48t = pst/RT®" is the standard concentration, and where G, = Hy — T'Si. We
also define the species reduced chemical potential py, = G /RT, k € &. Finally, the
species Gibbs functions G and the species reduced chemical potential uy, k € &,
are functions of v and T', which can be written

Gr(, T) = Gi(T) + RTlog vk, pux(vk, T) = pyp (T) + log i,

where G}, k € 8, are the species unitary Gibbs functions per unit mole and uf,
k € G, are the species unitary reduced chemical potentials.
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2.5. Chemical source terms

We consider n" elementary reactions among the n® species which can be formally
written as

S vk = Y My, T ER,
keSS keSS

where 9, is the chemical symbol of the kth species, v and vP are the forward
and backward stoichiometric coefficients of the kth species in the rth reaction,

respectively and S8 = {1,...,n"} is the set of reaction indices.
The Maxwellian production rates given by the kinetic theory can be written
wp = Z(V}gr v, kes, (2.11)
reR

where 7, is the rate of progress of the rth reaction. The rates of progress are given

by the symmetric expression®
‘ £ b
7 = Ko (explyy, p) — explvy, 1) (2.12)
where vf = (.. vl ) vb = (b v )t = (. )t and K s the
symmetric reaction constant. We define vy, = vP. — vl k € &, r € R, and the
reaction vectors v, = (U1, ..., Vpsr)%, 7 € R, s0 that v, = v? — L, and we denote by

R = span{v,,r € R} the linear space spanned by the vectors v,, r € R.

2.6. Mathematical assumptions

We describe in this section the mathematical assumptions concerning thermochem-
istry, and, partly, the assumptions concerning transport coefficients.

2.6.1. Assumption on thermochemistry

The species of the mixture are assumed to be constituted by neutral atoms and
electrons. We denote by 2 = {1,...,n%} the atom indexing set, n® the number
of atoms in the mixture, m;, [ € 2, the atom masses and ag; the number of Ith
atoms in the kth species. We also introduce the atomic vectors a;, I € 2, defined
by a; = (ai,...,0,5)%, I € 2. We define agy as the number of electrons in the
kth species and for notational convenience, we define 2 = {0} UA = {0,...,n%}.
We also assume that the electron species is present in the mixture as well as one
neutral species and one positively charged species. For notational convenience, we
assume that the last species in the mixture is the electron species. Since we will
ultimately investigate the limit of vanishing electron mass, we will only assume that
the electron mass mys is non-negative. We define the mass vector m and the charge
vector s by

m=(my,...,Mu)%, 6= (e1,...,5)",
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and the unit vector u by u = (1,...,1)*. We also define the mole fraction of the kth
species xg by xx = Y&/ > V» and the mass fractions of the kth species by yj, =
Pr/ D ie Pu SO that vy, = mpyr/ D cq muyi. We correspondingly define the mole
fractions vector x = (x1,...,%ps)* and the mass fraction vector y = (y1,...,yns)".

(Thy) The nonelectron species molar masses my, k € &, k # n®, and the gas
constant R are positive constants. The electron molar mass mys = mq s non-
negative. The formation energies E5', k € &, and the formation entropies
S$t, k € 6, are constants. The molar specific heats Cy i, k € &, are C™
functions of T > 0 and there exist positive constants c,, and ¢, with 0 < ¢, <
Coi(T) < &y, for T >0 and k € 6.

(Thy) The atom molar masses m, I € 2, are positive constants and the species
molar masses my, k € &, are given by

mk:Zrﬁlakl+r7zoako, ke 6.

led
We also have the proportionality relation s, = —aagg, k € S, where « is a
positive constant which represents the absolute value of electron charge per

unit mole.

(Ths) The stoichiometric coefficients vl and vP ., k € &, r € R, and the atomic
coefficients ag, k € &, 1 € A, are non-negative integers. The numbers of
electrons ayo, k € &, 1 € A, are integers. The atomic vectors a;, | € A, and
the reaction vectors v,., r € R, satisfy the conservation relations (v, a;) = 0,
r € R, | € A. This relation expresses atom conservation for | € A and charge
conservation for 1 = 0.

(Thg) The rate constants K5, r € R, are C* positive functions of T > 0.

(Ths) There exists at least a positive ionized species such that s, > 0, a neutral
species such that >, = 0, and we assume that the last species is constituted
by electrons so that s,s < 0.

These assumptions imply in particular the vector properties a; € R+, [ € 2,
and ap € R+, where R = span{v,,,r € R}. In addition, we have the vector relations
m = cq My + Moag, so that m € RL, and 3 = —aayg, so that s € R+. Note
that with (Ths) the vectors py = (p1,...,pns)" and z = (21,...,2,s)" are linearly
independent, as are the vectors m and . Defining mj = >, o myap and p' =
Y 1<kens 1 MYk We also have p = p’ — mog/a. Finally, the presence of a neutral
species in the model is not strictly needed, but somewhat simplifies the presentation,
especially for deriving explicit normal forms.

2.6.2. Assumptions on transport coefficients

We introduce a first set of assumptions concerning the transport coefficients which
is only valid for positive electron mass. These assumptions will be generalized in
order to encompass the limiting case of zero electron mass in the next section.
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(tr1) The multicomponent diffusion coefficients Dy, k,l € &, the thermal diffusion
ratios X, k € G, the volume viscosity k, the shear viscosity n and the thermal
conductivity X are C*° functions of (T,), where v = (y1,...,7ns)*, for T >0
and v > 0.

(tro) The thermal conductivity X\ and the shear viscosity n are positive functions.
The volume viscosity k is a non-negative function.

(tr3) For v > 0 and T > 0, the matrix D = (Dy)i, is real symmetric positive
semidefinite and its null space is spanned by the vectory = (y1,...,yns)*. The
thermal diffusion ratios xi, k € &, verify the relation {x,u) = 0.

These properties have important consequences for the matrix D of effective
diffusion coefficients defined in (2.9).

Lemma 2.1. Under Assumptions (Thy)~(Ths) and (tr1)—(trs) the matriz D is sym-
metric positive semidefinite. Its null space is spanned by the vectorsy and z, where
2k = Yk, k € 6, so that N(D) =Ry @ Rz and R(D) = span(y, z)*.

Proof. First note that y and z are nonzero since v > 0 and are not propor-
tional since there exists positively as well as negatively charged species. This
implies that (Dz,z) > 0 so that D is well defined. After a little algebra, we

obtain that
(D, z) = <D (a: - Egjji z) . igj z;z>

The properties of D are then directly deduced from the properties of D. O

2.7. Quasilinear formulation

The relations (2.9), (2.10) imply that conduction current j vanishes, so that the
charge ¢ remains zero if it is initially zero. As a consequence, the momentum and
energy conservation equations can be simplified into

O(pv) +0x - (pv@ Vv +pl)+ 0 - I1 =0, (2.13)

Oy (8+%pv-v)+3x-((5+%pv-v—|—p>v)—|—8x-(Q—|—H-v):0. (2.14)

Whenever neutrality holds, one could further express ;s in terms of the heavy
species molar densities, and eliminate completely the electrons from the governing
equations. This simplification, however, will not be used in this paper, since it
forbids symmetrization of the resulting system of partial differential equations.
Similarly, since the mass density can be written as p = p’ — moq/a where p’ =
ZZ;% m}k, one could use p’ instead of p in the governing equations, but this
simpler formulation is not needed in the following.
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We introduce a compact notation that will be used in the following. We define
the conservative variable U by

1 t
U= ('717o~«a’YnS7PU1aPU2aPUS7g+§PV‘V> 3 (215)
and the natural variable Z by

Z= (’Y]_,...,’YnS,U]_7’()27’()3,T)t. (216)

The components of U naturally appear as conserved quantities in the molar
formulation of the system of partial differential equations governing ambipolar plas-
mas. On the other hand, the components of the natural variable Z are more practical
to use in actual calculations of differential identities.

The conservation equations can be written in the compact form

AU+ oF + > oF==q, (2.17)

ie€C i€C

where C denotes the set {1,2,3}, F; the convective flux in the ith direction, F{iss
the dissipative flux in the ith direction, and € is the source term. The source term
Q) is given by

Q= (wi,...,wn,0,0,0,0)", (2.18)

and the convective flux F; by

Fi = (717117 o Yne Ui, PULV; + 01D, pU2Y;

1 t
+ di2p, pU3v; + i3, (5 + PV Vv +P> Uz‘) . (2.19)

The dissipative flux F3S can de decomposed into
F?iss _ F?iff + F;/isc’ (220)
where FY5¢ the viscous flux, and FH, the diffusion flux, are defined by
t
Fyise = <07 -5 0,10, I, s, ZHijvj>
jec
Ff = (Fuiye o, Frei 0,0,0, Q)"

The convective and dissipative fluxes are naturally given in terms of the natural
variable Z. In order to relate the natural variable Z to the conservative variable U,
we investigate the map Z — U. We introduce the open sets Oz and Oy defined by

Oz = (RY)™ x R® x R% |

Ou={ucR" ™ uy,... up >0, upya > flui)},
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where f is the map from (Rj_)” x R? in R given by

1 u2. 2, 2,
f(u):—un+1+un+2+un+3+ZUiE?a (2.21)

2 Yies Mitl €6

and E? is the internal energy per unit mole at zero temperature. The following

lemma is easily established as in the neutral case.!!

Lemma 2.2. Assume that properties (Thy)—(Ths) hold. The map Z — U is a C*°
diffeomorphism from the open set Oz onto the open convex set Oy.

As a consequence of this lemma, and from the expressions of convective and
dissipative fluxes in terms of Z, we can rewrite (2.17) as a quasilinear form in the
conservative variable U

a:U+ > Ai(U)U = D 9i(Bi;(V)9;U) + Q(U) (2.22)
iec i,jec
where A; = auFi7 F?iss = _Zjec Bij(U)ajU, 1 € C, and where A;, i € C, Bij,

1,7 € C and  are smooth.

3. Vanishing Electron Mass

The asymptotic stability of equilibrium states for the quasilinear system of partial
differential equations modeling ambipolar plasmas (2.22) is, in itself, an important
question. We note, however, that this system also depends on numerous parameters
such as thermal conductivity and chemical reaction rate constants. This is a strong
motivation for further investigating the dependence of solutions on the system pa-
rameters. This will be done in the next sections under the assumption that the
system coefficients depend smoothly on the parameters under consideration.

One of these parameters, often used in the physical modeling, is the electron
mass my,s = Mg, which is generally assumed to be zero. In order to investigate
this limit, the dependence of the system coefficients on the electron mass must be
clarified. The thermodynamic assumptions (Th1)—(Ths) can be used for any non-
negative electron mass and need not be modified. However, the transport properties
(th1)—(ths) are only valid for positive electron mass and must be replaced.

In order to do so, we need to express the dependence of multicomponent diffusion
matrices on binary diffusion coefficients explicitly and investigate the limit of the
diffusion coefficients D for vanishing electron mass.

3.1. Definition of D as a generalized inverse

We introduce the matrix A defined by
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XEX
1K (3.1)
Ay = ——— kle 6, k#1,

where DRI is the binary diffusion coefficient for the species pair (k,1) and xj, the
mole fraction of the kth species given by xx = /> ,cs - These coefficients
DYt are only defined for positive species masses. In a first-order theory, DP® only
depends on pressure and temperature Dbm DZ}“ (T, p). More generally, for more
accurate multicomponent diffusion coefficients, the quantities DZ}“, k,l € G, are
Schur complements from transport linear systems of size larger than n®, and are
then functions of T', p and v, but have similar properties.* The following properties
of the matrix A are easily established.”®

Proposition 3.1. Assume that the coefficients DE}“, k,l € 6, k # 1, are positive
and symmetric, and that v > 0. Then A is symmetric positive semidefinite, N(A) =
Ru where u = (1,...,1)%, R(A) = ut, A is irreducible and a singular M-matriz.

We define the mass fractions by yr = pr/ > e o1 80 that yx = mpye/ > e
my~y, and the mass fraction vector y = (y1, ..., yns)*. The multicomponent diffusion
matrix D can then be defined as a proper generalized inverse of A.78

Proposition 3.2. Keeping the assumptions of Proposition 3.1 there exists a unique
generalized inverse D of A with prescribed range y* and null space Ry, i.e. a the
unique matriz D such that DAD = D, ADA = A, R(D) =y, and N(D) = Ry.
This matriz D is positive semidefinite, we have AD =1 —y®u, DA=1—u®y,
and for a,b positive with ab = 1, we have D = (A +ay ®y)™! — bu ® u. The
coefficients of D are smooth functions of (T,~y) for T > 0, v > 0, provided that the
binary diffusion coefficients are smooth functions of (T,7y) so that the assumptions
concerning D in (tr1)—(trs) hold.

These results can easily be extended to the case of the matrix D. More specif-
ically, when neutrality holds, i.e. ¢ = (z,u) = 0, there exists a unique w such that
Aw = z and (w,y) = 0. Introducing the matrix A=A-2z® z/{w, z), one can
establish that D is the generalized inverse of A with prescribed null space Ry & Rz
and range span(y, z)*. However, these results will not be needed in the following
where we will directly use the relation (2.9) defining D from D.

On the other hand, from the kinetic theory of gases we have

DPin = O (#> , (3.2)

mgmy

and the quantity Dzinw/mkml can be assumed to be smooth. Therefore, electron
diffusivities Dbm k € 6, k # n°, explode for vanishing electron mass m,s — 0.

kns»
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3.2. Diffusion matrices for vanishing electron mass

In this section, we specify the assumptions concerning the asymptotic limit of
vanishing electron mass. We define the small parameter € by

& = (mps /)2,

where m is a characteristic mass of heavy species, i.e. nonelectron species, and we
investigate the behavior of the system coefficients as ¢ — 0. We will denote by [0, £]
an interval of relevant values for € such that heavy species masses stay away from
zero, so that (Thy)—(Ths) are satisfied, where £ > 0 is fixed. From relations (3.2),
electron diffusivities DZ;‘; k € 6, k # n®, goes to infinity as ¢ — 0 and we set

Dpbin = Dbin, k#1l, k#n® and [ #n®,
phn=1pbn k2l k= ori=m &
KT 2R » B= =n,

where the coeffcients T)E}“ are assumed to be smooth functions of the state variables
T > 0, v > 0 and of the parameter € € [0,&]. The properties (tr1)—(tr3) only hold
for positive species mass, that is for ¢ > 0 and we have now to establish that D
depends smoothly on the reduced mass ¢ and to identify its limit as ¢ — 0, thereby
removing the singular behavior at ¢ = 0.

In order to investigate the limit of Dase — 0, it is convenient to introduce a
partitioning of the species & = {1,...,n°} between heavy speciesh = {1,...,n°—1}
and electrons e = {n*}. Correspondingly, there is a block decomposition of vectors
z € R in the form z = (2", 2°)* and of matrices M € R™" such that y = Mz if
and only if y" = MPgh + MPere and y° = MePzh + Me°z°. The matrix A admits
in particular the block decomposition

Abb  Ahe Abh o Abe
A = = o o s 3.4
< Aeh Aee ) <€Aeh cAee > ( )
where the coefficients of A are smooth functions of 7 > 0, v > 0 and ¢ € [0, ]
and are defined as in (3.1) with DPI" replaced by 252}“. We will denote by AB! the

matrix AM = APP obtained for ¢ = 0, and by yd the vector y! obtained for & = 0,
keeping in mind that my, k € &, depend on ¢ from (Thy).

Proposition 3.3. Assume that the coefficients @Zli“, k,l € 6, k # 1, are positive
and symmetric, and smooth functions of T > 0, v > 0 and ¢ € [0,&]. There exists
coefficients D which are smooth functions of T > 0,y > 0 and ¢ € [0,&] such that
for any € > 0 we have
pPhh Phe
D=| _ 1.
Deh ZDee
€
Moreover, the matriz D(}}h obtained for ¢ = 0 is the diffusion matriz between heavy
species in the absence of electrons, i.e. Dgh 1s the generalized inverse of Agh with
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null space Ry} and range (y)*. Finally the scalar coefficient Dge obtained fore =0
if a positive function of T > 0 and v > 0.

Proof. From (3.4) we can introduce the matrices

Abb - Ahe
Aeh Aee

A AIO Ahh Ahe
- ’ - gAeh Aee ’

which are smooth functions of T' > 0, v > 0 and ¢ € [0,£]. From the properties of
A, it is easily obtained that for ¢ € [0,2] we have N(A") = Ru, R(A") = &+,
N(AP) = Ri, R(A") = ut, where we have defined i = (u", €)*. From the definition
of ¢ we also have y = (y®,y®)® with y© = £2y° where y° is independent of ¢, and we
define y = (y",ey®)*. We now introduce the generalized inverse D" of AP with
range R(D"P) = y! and null space N(D"P) = Ry, and the generalized inverse D'° of
Al° with range R(D'°) = y* and null space N (D) = Ry. These matrices D'P and
D' are well deﬁned for any ¢ € [0, &] since N(A")@y+ = R™, R(A"™) @Ry = R™,

N(AP) @yt = R(A®) @ Ry = R, thanks to (y,u) = (¥, ) = 1. In addition,
these matrices D”p and D' are meOth functions of T > 0, v > 0 and € € [0,¢]
since for any positive a, § with a8 =1 we have

(D* +ai@u)(A° +fy@y) = (D™ +au @) (A + Sy @y) = 1.

Denoting by M the diagonal matrix M = diag(1,...,1,¢), it is easily seen that for
any positive € we have A = MA"™ = A°M and D = D""M~! = M~!D'"°, These
relations yield in particular that D"’ = (D'°)* so that D" = (DuP)hh = (plojhh
Dhe _ (DUP)he/€ _ (Dlo)he Deh (Dup)eh (Dlo)eh/g and De¢ = (Dup)ee/g —
(D'°)e¢ /. This shows in particular that D", DB and D" are smooth functions of
T >0,v>0and ¢ € [0,2]. The identification of A" results from simple algebraic
manipulations making use of the properties of D and A, thanks to m,s = me2.

In addition, we have for ¢ = 0 that (DgP)®® = (D{)®® = 1/Ag and it is easily
deduced from the general properties of diagonal diffusion coefficients® that (AuP)ee
is a positive function of 7' > 0, v > 0 and € € [0, ]. O

We can now establish that D is a smooth function of T > 0,y > 0 and ¢ € [0,¢].

Proposition 3.4. Assume that the coefficients ’Dzl“ﬁ k,l € 6, k # 1, are positive,
symmetric, and smooth functions of T > 0, v > 0 and ¢ € [0,&]. Then the matriz
D is a smooth function of T >0,y >0, ¢ € [0,&]. Moreover, defining z;, = 2,/ zns
for ke {l,...,n° — 1}, its limit as € — 0 is given by

_ By D
lim D(e) =

e—0 _(D(})xhzh)t <D8hzh,zh>

Proof. The smoothness of D for positive € is a direct consequence of the smooth-
ness of D. The only nontrivial part of this proposition concerns the behavior for
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small €. We first note that
6)2

(Dz,z) = (D + 2eDNz" + (DMhZM 2MY) |

€

so that for the block D! it is easily obtained that

(thZh + Dhe) ® (thZh + Dhe)
Dee 4 2eDebzh 4 g(Dhhizh Zh)

Db — pHhh _

This expression shows that D" is smooth up to ¢ = 0 and converges to DB as
¢ — 0. For the term D" we can write that

Bhe _ Dhe B (thzh + Dhe)([)ee + SDehZh)
Dee 4 2¢ Dehzh 4 ¢(Dhhzh Zh)

so that Dhe is smooth up to € = 0 and converge to ﬁhhzo as € — 0. Thanks to
the symmetry of D the term D" is similar. Finally, the last term reads

(Dee +€Dehzh)2 )
Dee 4 2e Dehzh 4 g(Dhhzh Zh)

~ 1 /.
Dee = = (Dee_
9

and can be recast in the form
ﬁee _ VDee<ljthZh7Zh> _ S(VDehZh)2
Dee 4 2e Debzh 4 ¢(Dhhzh Zh)’

and there is a cancellation of singularity. This term is thus smooth up to e = 0 and
converges to (DEPzE z) as e — 0. 0

Remark 3.1. The limiting transport coefficients obtained with 58}‘ can also be
obtained by letting d,s = 0, so that E = pd% /z,s, and by substituting this rela-
tion in the expression of the diffusion velocities (2.5), (2.6). This relation can also
be obtained by letting the electron mass to go to zero in an electron momentum
conservation equation.

3.3. Assumptions for vanishing electron mass

As a consequence of the results obtained in the preceding sections, we can reformu-
late the assumptions on transport coefficients as follows:

(Tr1) The effective multicomponent diffusion coefficients ZA)M, k,l € G, the thermal
diffusion ratios xr, k € &, the volume viscosity k, the shear viscosity n, and
the conductivity X are C* functions of T >0,y >0 and € € [0, &].

(Tro) The thermal conductivity A and the shear viscosity n are positive functions.
The volume viscosity k is a non-negative function.

(Trs) Fory >0, T >0, and ¢ € [0,£], the matriz D = (ﬁ)k,l is real symmetric
positive semidefinite and its null space is spanned by the vectorsy and z. The
thermal diffusion ratios xi, k € &, verify the relation (x,u) = 0.
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We can finally rewrite the quasilinear system (2.22) in the form

0:U+ > Ai(U,e)U = > 8i(Bi;(U,2)0;U) +Q(U,e), (3.5)
iec ijec
where we have emphasized the dependence of the coefficients on the reduced electron
mass parameter €. The system coefficients of (3.5) are naturally defined in the open
domain (U,e) € Oy, where

Owey ={(U,e) e R" ™ Uy, Ups > 0,6 > 0,Upesa > f(Ur,...,Upegs, o)},

where f is the map introduced in (2.21) which depends on & through the species
mass mg, k € 6. We have seen, in addition, that the system coefficients can be
smoothly extended up to ¢ = 0.

4. Local Existence for an Abstract System

In this section, we investigate symmetrization and local existence of solutions for
hyperbolic—parabolic systems depending on a parameter.

4.1. Conservative symmeltrization

We consider an abstract second-order quasilinear system depending on a parameter
in the form

QU+ ) AT(UTeN) U = D 0i(B;;(Ure)o;U%) + Q1 (Use®) (4.1)
i€C* i,jeC*

where (U3e*) € Oysc+), O(u=e+) is an open set of R" x R™", and C* = {1,...,d}
denotes the direction indices of R%. Note that the superscript * is used to distinguish
between the abstract second-order system (4.1) of size n* in R? with £* of size m*
and the particular ambipolar plasmas system (3.5) of size n® + 4 in R? with ¢ the
reduced electron mass. All quantities associated with the abstract system have
the corresponding superscript *, so that, for instance, the unknown vector is U*.
We consider open domains Oy-.-), for the sake of simplicity, and assume that the
slices OF. = {U* € R";(U%e*) € O(yscr)} are convex for all e*. We assume that
the following properties hold for system (4.1).

(Edp1) The convective fluzes Ff, i € C*, dissipation matrices Bi;, i, € C*, and
source term 0* are smooth functions of the variable (U*,e*) € Oy« o+).

The following definition of a symmetric (conservative) form for the system (4.1)
is adapted from Kawashima and Shizuta.*

Definition 4.1. Consider a C* dipheomorphism (U%e*) — (V%e*) from the open
domain O(y«c+) onto an open domain Oy« and consider the system in the V*
variable

AS(VIENAVT + Y T AN(VIENaVT = D 9By (Vi) VT) + Q7 (VieT), (4.2)
i€C* 4,jEC*
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where

_ (4.3)

Ag=v-Ur, AT =AU = v-F
B, = Bov-U*, Qr=0".

The system is said of symmetric form if the matrices Ké, ;&f, 1 € C*, and gfj,
i,j € C*, verify the following properties (S1)—(Sa).
S1
S,
S3
Sq

The matriz ;AV\E(Vf €*) is symmetric positive definite for (V3e*) € O(ysery.
The matrices /K:‘ (Vie*), i € C*, are symmetric for (V5e*) € Opuex).

We have éjj(Vf ")t = é}‘i(Vﬁ e*) fori,j € C*, and (Vie*) € Opyuery-

The matriz B*(V*e*w) = dijec gfj (Vie*)ww; is symmetric and positive
semidefinite, for (Vie*) € Osery, and w € Y1 where 2471 is the unit
sphere in d dimensions.

(S1)
(S2)
(S3)
(Sa)

The following generalized definition of an entropy function is adapted from
Kawashima'® and Kawashima and Shizuta.'4

Definition 4.2. Consider a C* function ¢*(U%¢e*) defined over the open domain
O(use+y such that the slices OF. = {U* € R" ; (U%e*) € O(yse)} are convex. The
function o* is said to be an entropy function for the system (4.1) if the following
properties hold.

(E1) The function o* is a strictly convex function of U* € (’)6* in the sense that
the Hessian matriz is positive definite in each slice OF. .
(E2) There ezists real-valued C* functions q} = q (U%e*) such that

(Ou=0")A; = 0y-q;, ie€C*, (Ule") € Owsery-
(Es) We have the property that, for any (U%e*) € Owsex)
(0.0") 1 (BY))" = By(3B.0") ", ijeCt

Es) The matriz B*=3".. .. B Ut e*)(02.0% (U%e)) " twyw; is symmetric posi-
i,j€C 5] U J
tive semidefinite for any (U%e*) € O(yser) and w € 471

Kawashima and Shizuta have established®!'# the equivalence between conserva-
tive symmetrizability and the existence of an entropy function. For systems depen-
ding on a parameter £*, some limitations on the domains Oys.~) seem necessary,
like the smoothness of the slices £* — (’)ﬁi7 using local charts. In order to avoid such
technicalities, we only give a simplified version of an equivalence theorem, sufficient
for our application to ambipolar plasmas.

Theorem 4.3. Assume that the system (4.1) admits an entropy function o* de-
fined over Oyse+y. Then, the system can be symmetrized over O(y«e«y with the
symmetrizing variable V* = (Oy-o*)*. Conversely, assume that the system can be
symmetrized, and that, for the sake of simplicity, the open O«c+) is in the form
Owsery = Ov= X Oz where Oy« C R™ is independent of e* and O.« C R™
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independent of V*. Then there exists an entropy defined on Oy«c-) such that
V* = (6U*O'*)t.

4.2. Normal form

We assume that the abstract quasilinear system (4.1) satisfies

(Edp2) The system (4.1) admits an entropy function o™ on the open set O(ysc+) and
the slices OF. = {U* € R" ; (U%e*) € O(y=c~)} are convex.

Introducing the symmetrizing variable V* = (9y-c*)*, the corresponding symmetric
system (4.2) then satisfies Properties (S1)—(S4). However, depending on the range
of the dissipation matrices é;‘j, this system lies between the two limit cases of a
hyperbolic system and a strongly parabolic system. In order to split the variables
between hyperbolic and parabolic variables, we have to put the system into a normal
form, in the form of a symmetric hyperbolic—parabolic composite system.

Introducing a new variable W*, associated with a diffeomorphism from Oy«
onto O+, and multiplying the conservative symmetric form (4.2) on the left side
by the transpose of the matrix dw«V*, we then get a new system in the variable W*
and have the following definition of a normal form.*

Definition 4.4. Consider a system in symmetric form, as in Definition 4.1, and
a diffeomorphism (Vie*) — (W75e*) from Oy-.+y onto an open set O(ws=.-). The
system in the new variable W*

Ag(W3em) W™ + > AL (Wie)aW* = > 0i(By;(Wie™)a; W)

iecx i,jECH

+T (WEet 0, W) + Q" (Whe™),  (4.4)

where
Ay = (- V") A (- V). Bij = (Ow- V") (0w-V").
AL = (- V*)YA (- V), Q' = (V) (4.5)
T =— > 9i(8w-V")Bj; (0w- V)W,

i,jeC*
satisfies properties (S1)—(S4) rewritten in terms of overbar quantities. This system

is then said to be of the normal form if there exists a partition of {1,...,n*} into
1={1,...,n§} and 1 = {nf + 1,...,n*} such that the following properties hold.

(Nory) The matrices A, and E} have the block structure
—xI,1

. A, 0 ., 0 0
Ao = 0 K;H,H » By = OEfU,H :

)
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—=+I1,II —==II,11T
(Nory) The matriz B (Whetw) = dijec B:j (W et wiw; is positive defi-

nite, for (W75e*) € Owweery, and w € ni-1,
(Nor3) Denoting 0, = (01, ...,04)%, we have

T (W55 0,W") = (T1(W5e5 0. Wiy), Tri(W3 et 9. W),

where we have used the vector and matrix block structures induced by the parti-
tioning of {1,...,n*} into 1 = {1,...,n{} and 11 = {n§ + 1,...,n*}, so that we
have W* = (W}, Wj;)*®, for instance.

A sufficient condition for system (4.2) to be recast into a normal form is that, for
any fixed value of *, the null space naturally associated with dissipation matrices
is a fixed subspace of R™". This is Condition N introduced by Kawashima and
Shizuta, which is now assumed to hold. We strenghen this condition by assuming
that there exists a smooth explicit representation of this null space in terms of £*.

(Edps) The null space of the matriz

B* (Vieiw) Z B (V5 emww; ,
i,jEC*
does not depend on V* and w € X971, we denote by nj its dimension nj =
dim(N(B*)), and we have éfj(er*)N(é*) = 0, i,j € C*. Furthermore,
there exists a C™ application €* — P(e*) such that the first n§ columns of
P(e*) span the null space N(B*).

In order to characterize more easily normal forms for symmetric systems of con-
servation laws satisfying (Edp;)—(Edps) we introduce the auxiliary variables®!!
U* = P*U* and V* = P~!V. The dissipation matrices corresponding to these
auxiliary variables have nonzero coefficients only in the lower right block of size
n* — ng, where nj = dim(N(B*)). Normal symmetric forms are then equivalently
— and more easily — obtained from the V*' symmetric equation.®" A careful ex-
amination of the proof in Giovangigli and Massot reveals that the following theorem
holds.

Theorem 4.5. Consider a system of conservation laws (4.2) that is symmetric
in the sense of Definition 4.1 and assume that the null space invariance property
(Edps) is satisfied. Denoting by U* = P*U* and V*' = P~V the usual auziliary
variable, any normal form of the system (4.2) is given by a change of variable in
the form

= (o1(U1',e"), o (Vir,€")",

where ¢p and é11 are two diffeomorphisms of R™ x R™o and R™ ~"0 x R0,
respectively, and we have

T (W55 0,W*) = (0, T (W5 e’ 0, Wip)* .
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4.3. Local existence

In this section we investigate local existence of solutions around equilibrium states
and the continuous dependence of solutions with respect to a parameter. We con-
sider a system of conservation laws satisfying (Edp;)-(Edps) and the additional
property:

(Edps) The system (4.1) admits an equilibrium point U*¢ independent of €*.

We will denote by V*¢ and W*¢ the equilibrium point in the V* and W* variables
respectively. We assume for convenience that the domain O -+ contains a subset
in the form Ow- x K.« where Ow- is an open set of R” independent of ¢*, such
that W*¢ € Ow-, and K.~ is a compact set of R™ . In the following, we investigate

the dependence of local solutions on the parameter *. We will denote by || e ||; the
norm in the Sobolev space W/ (R?) and otherwise | ® || 4 in the functional space A.

Theorem 4.6. Let d > 1 and | > [d/2] + 2 be integers and let b > 0 be given. Let
Oy be given such that Oy C Ow-, dy such that 0 < dy < d(Oy, dOw-), and define
01 = {W* € Ow-;d(W*%Oy) < d1}. Then there exists T > 0 small enough, which
only depend on Oy, b and K.-, such that for any W*° with |W*Y — W*¢||; < b and
W0 € Oy, and any e* € K-, there exists a unique local solution W* to the system

AgOW* + > A oW = " 9,(Bo,W)+T +Q,
ieC* i,j€C
with initial condition
W*(0,2) = W (),
such that
W*(t,z) € Oy

and

Wi — Wi e ¢ ([0, 7, Wa(RY)) N ([0, 7], Wy~ (RY))

Wit — Wit € €([0, 7], W3 (R) N C*([0, 7], Wy 2 (RY)) N L((0,7), Wy (RY)).
In addition, there exists C > 0 which only depend on O1, b and K« such that

sup [[W*(r) — W*|? +/0 IWii(7) = Wit [y dr < ClIW™ = W[l (4.6)

0<7r<T

Finally, if W* is the solution corresponding to the initial state W*°(z) and parameter
e* and W* is the solution corresponding to the initial state W*9(x) and parameter
E*, we have the estimate

sup ||W*(r)—W*(r)||?_1+/0 IWii(7) = Wiy (7)II? dr

0<r<7

< C(IW™ = W7, + 674 (e527)) (4.7)
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where C' > 0 only depends O1, b and K.+, and where

811(€56%) = Ao e™) = Ao, E)lerr oy + Z A (") = AL E) o
i€C*

+ Z B} (") = By (&)1 o, + (e -0
i,jeC*

*

("é*)|cl—1(51)‘

Proof. Solutions to the nonlinear system (4.4) are fixed points W = W of the

linear equations!?
Ao (W2)a Wi + 37 A (W2 e)a, Wi = f (W2 0, Wiy, %)
i€C*
15§ DR s 1 5 | R ~ " " - (4.8)
Ag (WSM)a Wi — > By (W5 e%)0:0;Wip = (W50, W5e")
i,jEC*

with
LI * _* * oF * %
fi == > A7 (WieM)aWyy + 9 (Wie"),
i€C*
= YA wrenawy - S A (Wi ena,wg
i€C* ieC*
—% —x —«II,I1 «
+ TRWie W) + QWi + > 0By )W,
1,jEC*

which are hyperbolic in \TV}‘ and strongly parabolic in V~\/fI Fixed points are investi-
gated in the space W* € X-(0O1, M, M;) defined by W —W;¢ € C°([0, 7], Wi (R?)),
0 Wi € C°([0, 7], Wy~ (RY), Wi Wit € €0([0,7), W3 (R))NL2((0, 7), W, (R7)),
O:Wj; € CO([0, 7], Wi 2(R%)) N L2((0,7), Wa~ 1 (RY)), W*(t,z) € O,

s W) =W+ [ W) = Wi dr < 04°

and
| 1w oy dr <t
For W* in X;(O1, M, M), and 2 < k < [, we have the estimates!3

t
IW*(t) — W[ + /O IWii(7) = Wif[[7 41 dr < CF exp(Ca(t + MiVt))

t t
x (IIW*0 - W[ + C2t/0 I (7117 dr + Cz/o I3 ()7 dT) ;o (49)

where C1 = C1(0O1, Kc+) depends on O and K.+ and Cy = C3(O1, M, K.+ ) depends
on O, M and K., and is an increasing function of M. From the classical estimates
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I1£() = Ol < Collfllerq1<pisl o) L+ Dlz=) " 01,

where Cj is a universal constant, we also obtain upper bounds in the form
t
IFF @iy + If @7 < CoM?, /O Iff (D)IIf dr < Co(1+t)M?. (4.10)
From the governing equations, we also obtain
| 10 (- dr < CROT 4401* + 37%)) (4.11)
0

where M is defined for W* as M for W* and C3 depends on O1, M and K.+, and
is an increasing function of M. We now define for any « € (0, b]

Mo, =201 (01, Ker)ar, Mg = 2C3(01, My, Ko+)2C1 (01, K- ar.
Then 7 < 3/2 let small enough such that
exp(Ca (01, My, Ko+ ) (7 + M1pV/7)) < 2,
C2(O1, My, Koo )7(1 4+ 7)(2C1 (01, K- )2 < 1,
CoMyp/7 < dy,

where ||¢]|ze < Col|p|li—1. Then, for any o € (0,b], any W* € Xz(O1, My, M14)
any W*9(z), such that W** — We¢ € WL(R%), W0 € Oy, and |W*° — W*¢||; < a,
and any * € K.+, the solution W* to the linearized equations stays in the same
space X5(01, My, M1,). More specifically, we obtain from (4.9) and (4.10) that

M? < 2C20°(1 + 4C2C2t(1 4 2t)) < 4C2a? = M?

and from (4.11) we deduce that Mf < C3(2C )% (1 + 2t) < M%,, and finally that
||W* — W*eHLoo < C()Mlaﬁ < dj.

In oader to obtain fixed points, we establish that for 7 small enough, the map
W* — W* is a contraction in all the spaces Xz(O1, My, M1,), o € (0,b], and we
establish simultaneously inequality (4.7). Let W* and W* be in X;(O1, My, M1p),
let W*(z) and W*O(z) such that W — We € WE(RY), W — We € WE(RY),
WO W0 € O, (W —wW*e||; < @, [W*0 —W=e||; < a, let €*,* € K., and define
SW* = W*—W* and 6W* = W* —W*. Forming the difference between the linearized
equations, we obtain that

Ao (W3 2)a:0Wi + 37 A (W3 e),0WF = b ff + 6.-F7,
iec*
11,11 ~ 11,11 ~ (4.12)
Ao (Wie)0 Wiy — > By (W5e™)0i0;0Wiy = duefiy + 0c-fy
i,jecx
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where

* _I)I Nk % _I)I * ok -1 * * * * * N7 /? *
Su i = Ag (We )(AO (We )) (W3 0, Wiy, %) — 7 (W 0, Wi, %)

—1__ _ ~
Z(AO (W e¥) (AE’I(W’:g*)) A}I(er*)—A?I(W’:g*))aiwif,
i€C*
* LI s sy (LT * ok -1 * * * % * \A* Npx
Surfly = Ay (Whe )(AO (We )) Fi (W5 0, W %) — £ (W 9, W %)

£ Y (A e (A i) By owsen) - B W) g, Wi

i,j€C*
* _LI Nk Ak * % _LI * % -1 * * * *
ou-ff = (Ag (Wie") = A (W3e)) (Bg (Wie™)) i (WS 9, Wi, =)

=3 (A e - AW e)) (B wsen)) A (W <o

ieC
-3 (A e - A W) oW (W0, Wiy 2)
ieC

— (W% 0,W;p, %)
and

N ILIL o~y e —ILIT, o~ 10000 SRR Nt -
ooy = (Bg T (W5) = Ay (W) )(Ag T (Wie™))  fiy(W3 0, W5 e”)

AL et ~ILIL,~, ILIT, o I~
30 (Ao W)= Ay W) ) (A (wiet) B (Wie)a.0,w
i,j€C

A Nk Ak ~ILII * ok * * (A% YN
+3 (A? Towz ey A (W e ))aiajwnﬁn(w,awwﬁ )
i,7€C
— (W59, WEe™) .

These expressions now imply that
18w 1171 + 10w ffilI7-2 < Ca(llOWF 17y + [IoW5I7) ,
[10e-fE 1171 + 10~ fiill7- o < C5071(e5€%),
so that

sup W () [ I0W () dr < Ca(W0 ~ W+ 8y (<1e))
STST 0

+C7t(1+t)( sup_[oW*(7)]74 +/ ||5Wi‘1(T)||z2dT> ; (4.13)
0

0<r<7
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where all constants Cy4, Cs, Cg, C7, depend on O1, b and K.+. Now if 7 is small
enough so that C77(1+7) < 1/2, by letting W* = W* and e* = £*, we obtain, that
the map W* — W* is a contraction in all the spaces X7(O01, My, Mi,), a € (0,b].
Introducing the iterates W*™ starting at the initial condition W*? and such that
W+ — W*n_that is, W*(+1) is obtained as the solution of linearized equations,
then the sequence {W*"},>¢ is easily shown to be convergent to a local solution
of the nonlinear equations satisfying the estimates (4.6) at order [ — 1. Inequality
(4.7) is then obtained by letting SW* = §W* in (4.13). Finally, the estimates (4.6)
at order [ are recovered since for any a € (0,b], the space Xz(O1, My, M1,) is
invariant, and the proof is complete. O

5. Global Existence and Asymptotic Stability for an
Abstract System

In this section we investigate asymptotic stability of equilibrium states for an ab-
stract system of conservation law in normal form and the continuous dependence
of solutions with respect to a parameter. We consider a system of conservation
laws satisfying (Edp;)—(Edps) and assume for convenience either that the domain
O(wre+) contains a subset in the form Ow-« x K., where Ow- is an open set of R
independent of e* and K.- a compact set of R independent of W*, or that there
is a smooth extension of the system coefficients to such a domain.

5.1. Local dissipativity

If we linearize system (4.4) around the constant stationary state W*¢, we obtain a

linear system in the variable w* = W* — W*¢

Ag(W*em)aw™ + > A (W )aw™ = Y B (We")d,0w" — L (WS )w”,
ieC i,jEC

where L is defined by L= -ow-0". By Fourier transform, the spectral problem

associated with this linear system reads

Mo (W e*)p+ (CA" (W w,e*) — (2B  (Ww,e*) + L (We*)p=0, (5.1)

where ¢ € iR, i2 = —1, w € 2971, ¢* € Ko, A (W w, %) = Y iccn A; (W e*)w;,
and B (W w,e*) = >ijec B, (W e*)w;w;. We will denote by A((,w,e*) the
complex numbers X such that there exists ¢ € C"", ¢ # 0, satisfying (5.1).

The results of Shizuta and Kawashima'® can directly be generalized to para-
meter dependent situations. The smoothness of compensating matrices is indeed a

consequence of their explicit representation using matrix operational calculus.'®

Theorem 5.1. The following properties are equivalent

(Spe1) There exists a compensating matriz K defined and C>= over X4~ x K_.. For
any w € X471 and any €% € K.+, the matriz K (w,*) is real, the product
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K(wﬁ*)ﬂg(w*fs*) is skew-symmetric, K(—w,e*) = —K(w,e*), and the
matrix

K(w,e")A (WSw,e*) + B (WSw,e*) + L (W),

is positive definite.

(Spez) Let ¢ € iR, ¢ # 0, w € X%, and ¢* € K.«. Then all eigenvalues X of
A(¢,w,e*) have a negative real part.

(Spes) Let U e R™\{0} such that B (W*w,e*)¥ = L (W*e*)W = 0 for some
w e N1 % € Ko Then we have CAg(W*e*)U + A" (W*w, ") # 0 for
any ¢ € R.

(Speq) There exists 6 > 0 such that for any ¢ € iR, w € £ &* € K.+, and any
eigenvalue \ of A(C,w,e*), we have

L+ ¢l

Remark 5.1. It is not known if the matrix K (w,e*) is of the form } . Ki(e*)wj.
Nevertheless, in practical applications, it is generally possible to obtain compensat-
ing matrices in this form.

5.2. Global existence and asymptotic stability

We now investigate the existence of solutions globally in time around equilibrium
states. We assume that the system is stricly dissipative in the sense of (5.1) and
the source term is dissipative in the following sense.!!

(Dis1) For any €* € K-, the matric K;(W*‘? €*) is symmetric positive definite, the
matrices K: (W*¢e*), i € C, are symmetric, we have the reciprocity relations
§; (W*ee*)t = E;i (W*¢e*), i, j € C, and the matriz L (W*e*) is symmetric
positive semidefinite.

(Disy) The linearized system is strictly dissipative in the sense of Theorem 5.1.

(Dis3) The smallest linear subspace containing the source term vector Q*(V%e®),
Jor all (V5e*) € Ouexy, is included in the range of [*(V*c;s*), with L* =
(By=W*)PL" (V¥ %)y W™,

(Disq) For any " € K, there exists a neighborhood of (V*5e*), in Owse+), and
a positive constant § > 0 such that, for any (V*¢€*) in this neighborhood,
we have

OV (Vie")? < —(V* =V (Vi)

Theorem 5.2. Letd > 1 andl > [d/2]+2 be integers and consider the system (4.4).
Then there exists b > 0 small enough such that if W*° satisfies |W*0 — W*e¢||, < b,
there exists a unique global solution W* for any €* € Ko« to the Cauchy problem

AgdW* + > R oW = " 9;(B oW ) +T +Q7,

i€C* i,jEC*
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with initial condition
W*(0, ) = W*(z)
and

Wi — W€ € C°([0, 00), W3 (R?)) NC ([0, 00), W3~ (RT)) N L2((0, 00), W3(R?)),
Wip = Wif € €2([0,00), W3(R?)) NC([0, 00), Wy *(R)) N L*((0, 00), Wy (RY)).

Furthermore, W* satisfies the estimate
t
W (t) — W7 +/O 0= Wi (D) l1 + 10 Wir(n)[[7) dr < CIIW* — W[,

uniformly in €* where C is a positive constant and sup,crs |W*(t) —W¢| goes to zero
as t — oo uniformly in €*. Finally, emphasizing the dependence on €* by denoting
W*(t,x,e*) the solution obtained for e* € K. we have for any a* € K.«

lim sup [W*(t,-,€%) = W*(t, -, ") ci-qarz1+2) = 0.
>0

*

The main idea is that all usual estimates can be made uniform with respect to
the parameter ¢* since we are considering a compact set K.«. Thanks to the local
existence theorem and to uniform estimates, global solutions are obtained for all
e* € Kgx. Continuity with respect to the parameter £* is then a consequence of the
continuity over finite time interval and of uniform asymptotic stability. We define
for convenience N;(t) = N;(0,t) where

to
Ni(tr,t2)? = sup  [[W* (1) — W*|]? +/ (0= Wi (D)1 + 10 Wr ()][7) dt
t1 <7<tz t1
Lemma 5.1. Let ¢* denotes the modified entropy
" (W5e*) =o0"(W5e™) — o™ (W*e™) — (Qu=o™ (W* ™)) (W* — W*).
There exists a neighborhood B of W*¢ and constants ¢ and ¢ such that
YW*€B Ve € Kooy W — W2 < 5% (Wie™) < ¢|W* — W2,
Lemma 5.2. Letd > 2,1 > [d/2]+1 and B a bounded neighborhood of W*¢. There
exists a constant Bo(*B) independent of €* such that
Ve* € Koy, Ni(7) < Bo(B) =W €8, (t2)c0,7] xR,
Proposition 5.1. Let d > 2,1 > [d/2] + 2 and assume that W*°(x) is such that
W0 — wW*e € WLH(R?). Assume that W* is a solution over [0,7] such that
Wi — Wi € C°([0, 7], Wa(RY) N CH([0, 7], W3 (RY)) ,

Wit — Wit € C°([0, 7], W3(R?)) N €*([0, 7], Wy~ *(R?)) N L2((0, 7), W5 (R))

and that Ni(1) < Bo(B). There exists constants b’ < By(B) and C' > 1 independent
of €* such that

NZ(T) <y = NI(T) < C/HW*O —W*eHl.
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Proof. The proofs of Lemmas 5.1, 5.2 and Proposition 5.1 are similar to the situ-
ation without parameter,'!>'3 thanks to the compacity of the set K«.

We now apply the local existence Theorem 4.6 with Oy = B, any d; > 0 such
that 0 < dy < d(Op, Ow-), and by = B3o(B). There exists a local solution defined
over [0,7] for any e* € K.+, whenever ||[W*Y —W*¢||; < by, and from Theorem 4.6
we also have estimates in the form

Ni(7) < C|W* — W],
where C' > 1 depends on O1, by = Gp(B) and K.+. Let then

- b b

b = inf (67 _C,,(l + 02)1/2) ’
where b’ and C’ are given by Proposition 5.1 and assume that [[W*? — W*¢||; < b.
For any €* € K.~, we first have a solution defined on [0, 7] such that

Ni(7) < CW" = W[l < Cb <V < by = o(B).

Since N;(7) < b, we also have N;(7) < C'||W*0 — W*¢||; < C’b. We can now start
again from W*(7) at 7 since |W*(7) — W*¢||; < Ni(F) < by and we have a solution
defined on [7, 27] with N;(7,27) < CN,(7T). As a consequence, we obtain that

Ni(27) < (1 + CH'V2N(7) < (1 + CHYV2Cb < b < by,
so that from Proposition 5.1 with 7 = 27 we obtain
N(27) < C'b < b < by.

We can start again from W*(27) at 27 and an easy induction shows that the solution
is defined for all time and that for any ¢t > 0 we have N;(t) < C'[|W*0 — W*¢||,
uniformly for e* € K.«.

We emphaze now the dependence on €* by denoting W*(t, z,&*) the solution
obtained for e* € K.-. We introduce ®(t,e*) = |0, W*(¢,-,*)||?_, and it is easily
established that for any e* € K.«

/ |<I>(t,s*)|dt+/ 0,0(t, )| dt < CIW™ — W2,
0 0

where C is independent €* so that lim;_. |0, W*(¢,-,€*)|li—2 = 0 uniformly in
e* € Ke«. Let then o € K.« and let a > 0 be given. From these estimates, we
can find a time 7, such that |0, W*(¢,-,e*)|li—2 < a/2 for t > 7, and £* € K.
This implies that ||0,(W*(t,-,e*) — W*(¢,-,a*))|li—2 < a for any ¢ > 7, and any
eta® € Keo. On the other hand, we have (I, — )7 < 7, < I,7 for I, large
enough and we can divide the time interval [0,I,7] into the union of intervals
in the form [i7, (i + 1)7], for i = 0,1, — 1. We can now apply the estimates (4.7) to
deduce that
sup HW*(T’ "5*) - W*(T7 K a*)Hl—l < (1 + C)Iadl—l(gf Oé*) =0,

0<r<I, 7
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so that as ¢* — o* in Koo, W*(¢,-,&*) converges uniformly in ¢t € [0,I,7] to
W*(t, -, a*) in the W.~" norm. We have thus established that

and using the interpolation inequality ||¢||lci—qa/z+2 < Col|05 o8 ||6]l5~7, we
conclude that lime- o« sup;sq [[W*(t, -, %) — W*(t, -, &) || ci-(1a/2142) = 0. O

5.3. Decay estimates

Uniform decay estimates can be obtained, thanks to the compacity of K.+. These
estimates can then be used to improve the the continuous dependence on the
parameter by using the space VVzl_1 instead of ¢!~ (4/2]+2),

Theorem 5.3. Let d > 2,1 > [d/2] + 3 and W*°(z) be given, such that
W —wre ¢ WE(R?) N LP(RY),

with p € [1,2). Then, if |[W*0 —W~*¢||; and [|[W*® — W*¢||1» are small enough, the
unique global solution to the Cauchy problem satisfies the decay estimate

IW* () = W*e[lima < C(L+ )T (IW™ = W l1a + W = W*||12), 0 <,

uniformly in e* € Ko, where C is a positive constant and v = d(1/2p — 1/4).
Finally, for any a* € K.« we have

lim sup [[W*(t,-,€") = W*(t,-,a")[li-1 = 0.
ef—a” >0

Proof. The proof of decay estimates is similar to the case without parameter,'!:13

thanks to the compacity of the set K.«. These estimates combined with those of
Theorem 5.2, implies that

lim |[W*(t,-,e%) = W*||;—1 =0,

t—o0

uniformly for e* € K.+, and we can proceed as in the proof of Theorem 5.2. |

Remark 5.2. Decay estimates can also be obtained uniformly for d = 1 provided
that estimates'® about the exponential of (Ay) 1/2(CA" — ¢(2B" +L")(Ay) /2 at
(W*€ e*) can be obtained around ¢ = 0 uniformly in *.
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6. Symmetrization for Ambipolar Plasmas

We investigate in this section symmetric forms for the system of partial differential
equations modeling ambipolar plasmas (3.5).

6.1. Entropy and symmetric conservative form

We define the mathematical entropy o by

_ Vi Sk
o==> = (6.1)
keSS

where the 1/R factor is introduced for convenience, and the corresponding entropic
variables V reads

1 1 1 ¢
V = (0yo)* = yoia (Gl — 5V Vs G — MV - v7vl,v2,v37—1) . (6.2)

Theorem 6.1. The function o is a mathematical entropy for the system (3.5). The
map (U,e) — (V,€) is a C diffeomorphism from Oy onto O ) = Oy x O
where Oy = R" 13 x (—00,0) is independent of ¢ and O. = (0,&) is independent
of V. In addition, this diffeomorphism admits a smooth extension up to e =0 and
e = &. The system written in terms of the entropic variable V

Koatv + Z AZ&-V = Z 81(§U6JV) + ﬁ R
ieC i,j€C

with

KO:&/U, /X\ZZAZa\/U, Bij :Bwa\/U and ,Q:Q
is of the symmetric form, i.e. thamatrices ;&0, /KZ-, i€ C and éij, 1,j € C, verify
properties (S1)—~(Sa). The matriz Ao is given by
(V0K ke Sym
Ao = (vimqvs)iecies (PRT6:5 + 2005 )iec jec ,
(ME[°)ics (pPRTvj 4 Emevj)jec T,

where

2 tot
ZWL2 = E AUTE) Z1716 = E ’ykmkEkO 3
ke& keSS

Yo=Y (B +RI(pv-v+C,T).
ke&

Since this matriz is symmetric, we only give its left lower triangular part and write
“Sym” in the upper triangular part. Denoting by € = (&1,&2,&3)* an arbitrary vector
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of R3, the matrices /Ki, i € C, are given by

(VOmV - &)k jics Sym
D &A= | (umviv - €+ WRTE)iccics Sy ;
ieC

(MH'v - €)ics Tho Thv-€

with

Ymh = Z YempHPY Y = Z Yk (HEYY? + RT(pv - v + CpT) .
kES kES

Ly = B2V @VV-E+ pRT(V-Els3 + v E+EQ V)
Yho = (Smn + pRT)v - Ev* + RTH™¢" .
Moreover, we have the decomposition

Bij = 0;; RTB" + kRTBY; + nRTB!

17

with
(D) rics Sym
5D _ 1 03, s 03,3
p R b
Z YDy (pxx + v H) 013 Yp
keSS €6
where

Tp =T + Z Dia(pxx + v Hy) (pxi + viHi)
kicS

and denoting by § = (£1,€2,83)" and ¢ = (C1,(2,(3)" arbitrary vectors of R3, the
matrices Bf; and B?j, i,j € C, are given by
Onsms 0n573 0n571
ST GBS = | 05 E®C voEC |,
Hee Oume V-EC V-EV-C

and

OnS ,ns Ons ,3 Ons 1

S 6Bl = | Vo € CliatCRE-ZERC € CvEVCE—ZvoEC

i,j€C

O € GV v CE 2V 6CT E-Cvovh v v
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Proof. The matrices ;&0, ;&i, i € C, and §¢j7 i,7 € C, are easily evaluated by
using the natural variable Z. These matrices are symmetric, and we note that Ay
is positive definite since for any vector x of R *+4

</X\0x, I> = RC’UT2JEELS+4 + pRT Z(Ins_;'_ﬂ =+ Uﬂxns+4)2

nec
2
tot
+ E Yk <.T]g + my E VpTns4p + Eko .Tns+4> .
ke& pnec

Similarly B is positive semidefinite since we have

(Bx, x)
RT

1 ~
> Z Dii(vewr + (v Hrk + pXk)Trs+4) (@ + (v Hi + pX1) T 14)
k,leS

+ /\Txis+4 +n Z(an—W + v,,a:ns+4)2
vel

2
1
+ (Ii + 517) <Z E(Tnsyo + v,,acns+4)> .

vel

From the equivalence Theorem 4.3 we deduce that ¢ is a mathematical entropy.
O

6.2. Normal variable

In this section we investigate normal forms for system (3.5). We first establish the
null space invariance property.

Lemma 6.1. The null space of the matrix

B(V.e.6) = > Bi;;(V)&¢;
1,j€C
is independent of V € Ov and € € X2, where X2 is the unit sphere in three
dimensions. For any e € [0,&] this null space is given by

N(B) = Rin & R,

where m = (m,0,0,0,0)*, 3 = (5,0,0,0,0)*, and we have gij(V)N(g) =0,4,j €C,
for V € Oy, € € [0,0).

Proof. The expression of (éx x) in the proof of Theorem 6.1 yields that
<§x ) = 0 if and only if @psy1 = 0, Tpsj2 = 0, Tps43 = 0, Tpsyg = 0, and
(Ik)ke@ € N(D) By using Lemma 2.1, we deduce that N(B) is spanned by
m = (my,...,Mps,0,0,0,0)% and 3z = (571,...,5,s,0,0,0,0)%. It is then easily
checked that ém(V)N(é) =0,4,j€C, for VeOyande € |0,c0). m|
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Making use of the explicit basis of N(B) we define the matrix P from

mi 21 0 ... ... 000O0O0
mo 30 0 ... ... 000O0O
ms »3 1 0 ... 000O00O
0
p=| : 0: ::: (6.3)
Mps s 0 ... 0 10000
0 0 0 ...... 01000
0 0 0 ...... 00100
0 0 0 ...... 00010
0O 0 0 ...... 00001

From Lemma 6.1 and from assumptions (Thy)—(Ths), assuming for instance that
the first species is neutral and the second has a positive charge, it is easily checked
that the matrix P is always nonsingular, that the first two columns are spanning
N(B), and that P is a smooth function of ¢ € [0, ].

We may then introduce the auxiliary variable U’ = P*U and the corresponding
entropic variable V/ = P71V given by

1 t
U = <p7Qa’y37°"7’7n5apvl7pv2upv3ag+ §pV'V>

and
t
’ 1 %201 — %102 1 szl + mng , ’
- -\ ——==vVvV, — s, U1, V2,V3, —
V 9 uV37 7Vn 9 9 9 9 ]- 9
RT oMy — X112 2 M1 — X113
where
p=Gr—1G1 —s1.Gy, 3<k<n,

and

KoM — X2 Ay — X21Mg

Tk=—-—"""——"—, s§p=——"—, 3<k<n.
21y — #1712 21y — 112

From Theorem 4.5, normal variables are in the form W = (¢1(Uy,€), é11(Viy, €))*,
where Up is the first two components of U’ and V{; the last n® + 2 components of
V’. For convenience, we choose the variable W given by

s _ Sps

W = (p,¢,108(v3/71°75%), - - -, 1og(yns /11 15" ), v1, va, 03, T)" . (6.4)
Theorem 6.2. The map (V,e) — (W, ¢) is a C* diffeomorphism from Oy oy onto

Ow,e) = Opq X R™+1 % (0,00), where

.k M,
Opq =1 (u1,u2) € R?:u; >0, min —wu; < up < max —uq p .
k€& my, keEG My
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This diffeomorphism admits a smooth extension up to e =0 and € = £. The system
written in the W variable

AgOW + > AW = Y 9i(Byo,W) +T +9Q, (6.5)

ieC i,jeC

where KO = a\NVtAOa\NY, Kl = &NV“R&NV, 1 € C, gij = 8WV“§Z-j8WV7 ’L'7j c C,
T=— Zm—ec 0;(OwV*)B;;0WwVO;W, and Q = owV*Q, is in the normal form. The
matriz Ay is given by

LI
_ AO Sym
AO = 3
—ILIT
Ons+2)2 AO
with
— 1111
A Sym
LI 1 Yoz —Eps ~ILIT | P
Al = ——M A = 3,n5—2 3,3
L SIS SER S [_zm% e 1 ° FE )

Ot,ns—2  0O13 T2

2 2
ZWL2 = E RAUTE) Zm% = E Y2, 2%2 = E Yk
keSS keS keSS

—ILIT . ‘ . .
and A is the square matriz of dimension n° — 2 whose coefficients are

—ILII MEmuY,e — (Mpsg + M) Ymoe + 2620502
Apl = Tk0k— 1N 3 ;
’ Y22 — Zm%

3<k, 1<n®.

Denoting by &€ = (&1, &9,63)% an arbitrary vector of R3, the matrices A;, i € C, are
given by

OnS)ns Sym
Z §ZK1 = K()V . 5 + Ka 03,3 s
ieC P .t
01, Wﬁ
where A" has its columns gien by
—Q 2%2 — qu% —Q quz — Em%
Al = g e, Ry, = Ponee,

Y, oY — X2, Y282 — X2

—a oY, — (psg + muq) Smse + @0 X2
A, = 1-— <l<n®.
te W( S — 2, & 3<ism
The matrices Ej have the structure E-j = 5ij§D + Efj + E?j and denoting by

€= (£1,6,8) and ¢ = ((1,C2, (3)* arbitrary vectors of R3, the matrices §fj, E?j,
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i,j € C, are given by
Ons,ns OnS,B On5,1
55 | BY p 2
Y &GB B = R | 0o m6-Clos+nC®@E&+ (r—3n|E®C 031 |
i,j€C

01,n 01,3 01,1

=D
and the matrixz B~ is given by

[ 02)2 Sym—
Ops—2,2 RT2(Daryin)s<ki<ne
BY = L 03,2 03,n5 —2 03,3 ,
pT
01,2 <Z v Dyt (v RT + ka)) 013 Ty
ked 3<i<ns ]

1 ~
I5=7m <>\pT + > Dulpxk + RTv) (pxi + RT%)) ;

kleS
and finally
1 t
Q= (0,0,wg,...,wns,0,0,0,—ﬁ Z Ekwk> .
keSS
Proof. These are consequences of lengthy calculations and of Theorem 4.5. O

7. Asymptotic Stability for Ambipolar Plasmas

In this section, we investigate the asymptotic stability of equilibrium states for the
system (6.5) modeling ambipolar plasmas as well as the limit of vanishing electron
mass.

7.1. Main result

We consider the system (6.5) written in the W = (W}, W};)*® variable, with the
hyperbolic variable

WI = (pa Q)t 3
and parabolic variable
Wi = (log(’YB/fYISrY;S)v SRR 10g(7n‘§ /fYInS ,Yé?ns )a U1, V2, U3, T)t :

The following result is a direct consequence of the axiomatic structure of
thermochemistry.® !
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Proposition 7.1. Let a temperature T¢ > 0, a velocity v¢ € R3, a mole density
vector v/ > 0 be given, and assume that properties (Thy)—(Ths) hold. Then there
erists a unique constant equilibrium state U¢ such that

Q%) =0, (7.1)
in the form U® = (7§, ..., 7%, p°uf, p°us, p°u§, p°e(T¢) + 5p°ve - v©)* and such that
v e (v +R)N(0,+00)™.

Note that this equilibrium state is independent of the reduced electron mass €.
In addition, whenever v/ is such that ¢/ = (77, 3) = 0, we obtain ¢¢ = (v¢, ») = 0,
since 2 € R+ and 7¢ € 4/ 4+ R. The equilibrium state corresponding to the various
variables are also denoted with the superscript “e”, so that the equilibrium states
in the variables V and W, for instance, are denoted by V¢ and W€, respectively.

Theorem 7.1. Let d > 1 and | > [d/2] + 2 be integers and consider the system
(6.5). There exists b > 0 small enough such that if |W® — W¢||; < b, there ezists a
unique global solution W for any e € [0, ] to the Cauchy problem

Koatw + ZR&W = Z GZ(EJQW) + T + ﬁ,

ieC i,j€C
with initial condition
W(0,2) = W(z),
such that
Wi — Wi € C°([0, 00), W5 (R?)) N CH([0, 00), Wy ' (RY)) N L2((0, 00), Wy (RY)),
Wir — Wi € €°([0, 00), W5 (R?)) N C*([0, 00), W3 2(R?)) N L((0, 00), W5 (RY)) .

Furthermore, W satisfies the estimate

t
IW(t) — Well? +/O (19xp(T)[7-1 + 10xa(T)[7-1 + 18xv(D) 7 + 8xT(7)]7) dr

t
+ Y [ loxlogn /g dr < CIWe — well,
3<k<ns /0

where C' is a positive constant and sup,crs [W(t) — W€| goes to zero as t — oo.
Finally, emphasizing the dependence on € by denoting W(t,x,€) the solution ob-
tained for € € [0,&], we have for any a € [0, €]
lim sup [|W(t,-,€) — W(t, -, @)||ct—qasz112) = 0.
£ >0
Physically relevant solutions correspond to initial conditions such that ¢° = 0

and equilibrium states such that ¢ = 0, since in this situation we easily recover
that ¢(t,) = 0 for any ¢t > 0 and = € R<.
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Theorem 7.2. Letd > 2,1 > [d/2] + 3 and W°(z) be given, such that
WO —wWe € Wi(R?) N LP(RY),

with p € [1,2). Then, if |[W° —W¢||; and |[W° —W¢||» are small enough, the unique
global solution to the Cauchy problem satisfies the decay estimate

IW(E) = W2 < CL+ 1T (IW? = W12 + W = We|Ls),  t € [0,+00),

uniformly in e € [0, ] where C is a positive constant and vy = d(1/2p—1/4). Finally,
for any a € [0,&] we have

lim sup [W(t,-,2) — W(t, )11 = 0.

E—Q t>0

7.2. Proof

The system of partial differential equations modeling ambipolar plasmas has been
written into a normal form in Theorem 6.2. The coefficients of this normal form are
smooth functions of W and of the parameter € € [0, &]. Moreover, the equilibrium
state is independent of . As a consequence, we only have to establish that properties
(Disy)—(Disq) are satisfied.

The linearized system around the constant state W€ reads

Ao(WEe)dpw + Z A;(We)ow = Z B, (W¢€)d;0;w — L(WSe)w,
ieC ijec
where L = —0wQ and w = W — W€, Property (Dis;) is a direct consequence of the

following expression of L(W¢¢) at an equilibrium point

LWee) = > Ko, @7,
reR
where 7. = (0,0,v,3,...,Vrp,0,0,0, = > . v By /RT?) and U/%i = K exp(vt, 1),
obtained directly from € or from the expression of E(W‘f ) given in Giovangigli
and Massot.®!! Properties (Dis3) and (Dis4) are also established in Giovangigli and
Massot.® ! In order to examine if (Disy) holds, the most convenient way is to use
property (Spes) of Theorem 5.1.

Proposition 7.2. For any equilibrium state W€ we have
N(B(WSE,¢)) = Re! @ Re? ¢ N(L(WSe)),

and if the equilibrium point W€ is such that ¢¢ = 0, there exist nonzero vectors ¥
of Re! @ Re? such that (Ag(WSe)W¥ + A(WSE,e)U = 0 where ¢ is real.

Proof. From the normal form established in Theorem 6.2, introducing the coordi-
nates (uy, wh, pih, - . ., i) of the vector (v Hy + pXk)res with respect to the basis
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(m, 3,€3,...,e"), we have

(Bx,z)
RT

N =

Y Dui(men + phane+a) nwe + g +a) + AT g4
>3

2
1
+ nZ(xn5+V + Uu$n5+4)2 + ("{ + §n> <Z gu(anJru + Uu$n5+4)> )

veC vel

and this yields N(B(W¢&,¢)) = Re! @ Re?. From the expression of L(W¢¢) it is
easily checked that Re! @ Re? C N(L(W¢¢)). A direct calculation yields

(CAo + K)(alel + a262)

- alz,{z — agzm% Oézzmz — alEm%
- (“ PV OSse CHVoe——

P(alz;ﬁ - a2zm%) + q(a22m2 - alzmh) t
0,...,0, Sy 2 £.,0/),
and selecting ( = —v-£, a1 = Do, a0 = .2, U = aje! +ane?, it is easily checked
that AoV + AV = 0 when ¢ = 0. O

This problem, however, is artificial and due to the lack of dissipativity properties
associated with the electric charge equation, which must guarantee that the charge
remains zero. Two equivalent form can be introduced for the system governing am-
bipolar plasmas, that is, such that regular solutions coincide, and which guarantee
strict dissipativity.

One can first modify chemistry production rates € in the form

[ ﬁ(l) n 5(2) :
where ﬁ(l) is the previous source term given in Theorem 6.2 and 5(2) is defined by
a® = T?w, with
0 0 01,ns 42
L = 0 « Ol,ns+2 )
Onsy21 Onsy21 Opsy2psi2

where o > 0 is a positive parameter. In this situation, the null space of B(W¢§, ¢)
is unchanged, but e? is no longer in the null space L(W¢¢) so that

N(B(W;€,2) N N(L(W5e)) = Re,

and strict dissipativity is then easily established. Note that the corresponding charge
equation reads

6156] + 8x : (qV) = —aq,



1398 V. Giovangigli & B. Graille

and contains a consumption term —cagq. This equation, of course, guarantee that
the charge remains zero if ¢° = ¢ = 0, so that physical solutions of the modified
system coincide with physical solutions of the original system.

6 consists

A second modification, which has interesting numerical consequences,
in modifying the diffusion coefficients. The resulting charge equation then contains
a diffusion term and only one hyperbolic component remains. More specifically, we

modify the matrices B;;, i, € C, in the form
Eij — Ez(jl) + 5ij§(2) , 1,j€C,
where §5]1 ) is the previous matrix given in Theorem 6.2 and E(Q) is defined by

0 0 01,ns 42
BY = 0 a O1ms42 | »

Onst2,1 Onsg21 Onsgoneta

where o > 0 is a positive parameter. In this situation, the null space of B(W¢¢&, ¢)
do not contains e? and the null space L(W¢e) is unchanged so that

N(B(W:E ) N N(LW:e)) = Re?,
and strict dissipativity is obtained. The corresponding charge equation now reads
g+ Ox - (qv) = Ox - (a0xq) ,

and the diffusion term 8y - (adxq) as a stabilizing effect.® This equation guarantees
again that the charge remains zero if ¢° = ¢® = 0, so that physical solutions of the
modified system coincide with physical solutions of the original system. Of course,
both modifications could also be combined.

References

1. S.I. Braginskii, Transport processes in a plasma, Rev. Plasma Phys. 1 (1965) 205-311.

2. C. Desmeuse, G. Buffa and B. Dubroca, Different level of modeling for diffusion
phenomena in neutral and ionized mixtures, J. Therm. Heat Trans. 11 (1997) 36-44.

3. A. C. Eringen and G. A. Maugin, Electrodynamics of Continua (Springer-Verlag,
1990).

4. A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in
Physics, m24 (Springer-Verlag, 1994).

5. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases
(North-Holland, 1972).

6. V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms,
Impact Comput. Sci. Engrg. 2 (1990) 73-97.

7. V. Giovangigli, Convergent iterative methods for multicomponent transport, Impact

Comput. Sci. Engrg. 3 (1991) 244-276.

V. Giovangigli, Multicomponent Flow Modeling (Birkhauser, 1999).

9. V. Giovangigli and B. Graille, Kinetic theory of partially ionized reactive gas mixtures,
Physica A327 (2003) 313-348.

%



10.

11.

12.
13.

14.

15.

16.

17.

18.

Asymptotic Stability of Equilibrium States for Ambipolar Plasmas 1399

V. Giovangigli and B. Graille, The local Cauchy problem for ionized magnetized gas
mixtures, submitted.

V. Giovangigli and M. Massot, Asymptotic stability of equilibrium states for multi-
component reactive flows, Math. Mod. Meth. Appl. Sci. 8 (1998) 251-297.

B. Graille, Modélisation des mélanges gazeux ionisés, Ph.D., in preparation.

S. Kawashima, Systems of a hyperbolic—parabolic composite type, with applications to
the equations of magnetohydrodynamics, Doctoral Thesis, Kyoto University (1984).
S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic—
parabolic systems associated with the conservation laws, Téhoku Math. J. 40 (1988)
449-464.

M. Massoudi and E. J. Boyle, A continuum-kinetic theory approach to the rapid flow
of granular materials: the effects of volume fraction gradient, Int. J. Nonlinear Mech.
36 (2001) 637-648.

K. R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorheological
materials, Continuum Mech. Thermodyn. 13 (2001) 59-78.

J. D. Ramshaw and C. H. Chang, Ambipolar diffusion in two-temperature multicom-
ponent plasmas, Plasma Chem. Plasma Process. 13 (1993) 489-498.

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic—parabolic type
with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14 (1985)
249-275.



