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We investigate a system of partial differential equations modeling ambipolar plasmas.
The ambipolar — or zero current — model is obtained from general plasmas equations
in the limit of vanishing Debye length. In this model, the electric field is expressed as
a linear combination of macroscopic variable gradients. We establish that the governing
equations can be written as a symmetric form by using entropic variables. The corre-
sponding dissipation matrices satisfy the null space invariant property and the system
of partial differential equations can be written as a normal form, i.e. in the form of
a symmetric hyperbolic–parabolic composite system. By properly modifying the che-
mistry source terms and/or the diffusion matrices, asymptotic stability of equilibrium
states is established and decay estimates are obtained. We also establish the continuous
dependence of global solutions with respect to vanishing electron mass.
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1. Introduction

Ionized gas mixtures — or plasmas — with chemical reactions are related to a wide

range of practical applications such as laboratory plasmas, high-speed gas flows or

atmospheric phenomena. This is a strong motivation for investigating the structure

and properties of the corresponding systems of partial differential equations.

The equations governing high density low temperature plasmas can be derived

from the kinetic theory of ionized gas mixtures. Different systems can be obtained

depending on the various characteristic lengths and times of the phenomena under

investigation. Assuming that there is a single temperature in the mixture — this is

the case for numerous practical applications — the corresponding governing equa-

tions are derived in Ferziger and Kaper5 and Giovangigli and Graille9 for general

reactive polyatomic gas mixtures.
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The ambipolar approximation is often used in the modeling of laboratory and

space plasmas and is obtained for vanishing Debye length.2,17 The corresponding

model is a quasi-neutral model where the conduction current is set to zero. In

this approximation, there is no magnetic field and the (internal) electric field is

eliminated through the use of zero current constraint. The electric field can then

be expressed in terms of macroscopic variable gradients and the resulting transport

fluxes involve new effective ambipolar transport coefficients.

The governing equations for reactive ionized gas mixture in the ambipolar limit

constitute a second-order quasilinear system of conservation laws. The asymptotic

stability of equilibrium states for this quasilinear system of partial differential equa-

tions is by itself an important question. This system, however, also depends on nu-

merous parameters such as thermal conductivity and chemical reaction constants.

One of these parameters, often used in the physical modeling, is the electron

mass, which is usually assumed to be zero. In order to investigate this limit, the

dependence of the system coefficients on the electron mass must be clarified since

electron diffusivities become infinite as the electron mass vanishes. In order to do so,

we explicit the dependence of multicomponent diffusion matrices on binary diffusion

coefficients and establish the smoothness of the system coefficients with respect to

the electron mass.

Next we consider an abstract system of conservation laws depending smoothly

on a parameter. We investigate symmetrizability, asymptotic stability of equilibrium

states, and continuous dependence of solutions with respect to the parameter. We

first establish continuous dependence of solutions locally in time and then globally

in time around equilibrium states under appropriate norms. Decay estimates are

also established globally with respect to the parameter.

We then apply these results to the system of partial differential equations mo-

deling ambipolar plasmas. We first establish that the system can be written as a

symmetric form and admits an entropy in the mathematical sense.13,14 The re-

sulting dissipation matrices are shown to satisfy the null space invariance property

introduced by Kawashima.13 The system of partial differential equation is next

written into a normal form, that is, in the form of a symmetric hyperbolic–parabolic

composite system with two hyperbolic components, with smooth dependence of the

system coefficients on the electron mass.

The structure and properties of the equations in the ambipolar limit are first

insufficient to establish asymptotic stability. This problem, however, is shown to be

artificial and due to the lack of dissipativity properties associated with the electric

charge equation, which must guarantee that the charge remains zero for physical

solutions. Two modified forms are then introduced for the system of governing

equations, i.e. such that regular physical solutions coincide. These reformulations

guarantee asymptotic stability and continuous dependence of global solutions with

respect to the electron mass.

One can first modify chemistry production rates in the direction of the charge

vector and orthogonally to chemical reaction vectors. This yields a consumption

term in the charge equation ensuring enough dissipativity. A second modification,
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which has interesting numerical consequences, consists in modifying the diffusion

coefficients in the direction of the dyadic product of the charge vector.

Our paper is organized as follows. In Sec. 2, we present the governing equation

for reactive ionized gas mixtures in the ambipolar limit. In Sec. 3, we investigate

the dependence of the system coefficients on the electron mass. Symmetrization

and local existence for an abstract system depending on a parameter is considered

in Sec. 4. Global existence around equilibrium states with continuous dependence

on a parameter is established in Sec. 5. Symmetrization for the quasilinear system

modeling ambipolar plasmas is obtained in Sec. 6. Finally, in Sec. 7, we establish

asymptotic stability of equilibrium states for ambipolar plasmas with continuous

dependence on the electron mass.

2. Ambipolar Reactive Gas Mixtures

We consider a reactive ionized gas mixture composed of ns chemical species in the

presence of an electric field. The general governing equations — derived from the

kinetic theory of gases — can be split between conservation equations, transport

fluxes, thermodynamics, chemical production rates, and are completed by Maxwell’s

equations for the electric field.5,9 The full system of partial differential equations has

a complex structure and is out of the scope of the present paper. These equations

are simplified here in the ambipolar — or zero current — approximation where the

conduction current vanishes.

2.1. Conservation equations

We denote by S = {1, . . . , ns} the species indexing set, ns the number of species, ρk

the mass per unit volume of the kth species, γk the number of mole per unit volume

of the kth species, κk the molar charge of the kth species, and mk the molar mass

of the kth species so that ρk = mkγk. In contrast with previous work,11 we will

use molar quantities like (γ1, . . . , γns) in order to describe the state of the mixture.

This molar formulation is, of course, strictly equivalent to a mass formulation using

mass densities like (ρ1, . . . , ρns) because the species mass mk, k ∈ S, are strictly

positive. However, we will ultimately investigate the asymptotic limit of vanishing

electron mass, and, therefore, we need to work in a molar framework.

The mole conservation equation for the kth species reads

∂tγk + ∂x · (γkv) + ∂x · Fk = ωk , k ∈ S , (2.1)

where v is the macroscopic velocity of the mixture, Fk the molar diffusion flux and

ωk the molar production rate of the kth species. Bold symbols are used for vector

or tensor quantities in the physical space R3 so that for instance ∂x = (∂1, ∂2, ∂3)
t.

In the absence of magnetic field, the momentum conservation equation can be

written in the form

∂t(ρv) + ∂x · (ρv ⊗ v + pI) + ∂x · Π = qE , (2.2)
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where p is the pressure, I the unit tensor, Π the viscous tensor, q the total charge

per unit volume, and E the (internal) electric field.

Finally, the energy conservation equation reads

∂t

(
E +

1

2
ρv · v

)
+ ∂x ·

((
E +

1

2
ρv · v + p

)
v

)
+ ∂x · (Q + Π · v)

= (qE + j) ·E , (2.3)

where E is the internal energy per unit volume, Q the heat flux, and j the conduction

current vector. In the following, the (internal) electric field is eliminated from the

governing equations by using the ambipolar constraint.

2.2. Transport fluxes

The molar diffusion flux Fk, k ∈ S, can be written in the form

Fk = γkVk , k ∈ S , (2.4)

where the diffusion velocity of the kth species Vk is given by

Vk = −
∑

l∈S

Dkl(dl + χl∂x log T ) , k ∈ S , (2.5)

and where the diffusion driving force dk reads

dk =
1

p
(∂xpk − γkκkE) . (2.6)

In these relations, Dkl, k, l ∈ S, are the multicomponent diffusion coefficients, χk,

k,∈ S, the thermal diffusion ratios, and T the absolute temperature. The expression

of the heat flux is

Q = −λ∂xT +
∑

k∈S

(pχk + γkHk)Vk , (2.7)

where Hk is the enthalpy per unit mole of the kth species. Finally, the viscous

tensor is given by

Π = −κ(∂x · v)I − ηS, (2.8)

where S is the usual strain symmetric traceless tensor

S = ∂xv + ∂xv
t − 2

3
(∂x · v)I .

Remark 2.1. In the presence of magnetic fields, the transport fluxes in multi-

component gas mixtures are nonisotropic.9,10 In this situation, the viscous tensor

involve all symmetric tensors constructed from S and the antisymmetric rotation

tensor associated with the magnetic field. More general structure for the stresses are

also obtained in field-dependent media as in electrorheological fluids investigated

by Rajagopal and Ru̇žiča,16 in ferrofluids investigated by Eringen and Maugin,3 or

in granular materials investigated by Massoudi and Boyle.15
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2.3. Zero current constraint

In ionized mixtures, there is a Coulomb screening by mobile charges over distances of

the order of the Debye length. For small Debye length, the mixture can be considered

as quasi-neutral, so that q = 0, although the electric field is nonzero. In the absence

of external electric field, and for small Debye length, it is also natural to assume that

positive ions and electrons diffuse as a team1,2,17 so that the conduction current j

vanishes. This is the origin of the terminology ambipolar and this approximation is

consistent with the charge equation

∂tq + ∂x · (qv) + ∂x · j = 0 .

In other words, the (internal) polarization electric field E insure that the conduction

current j vanish. In this situation, provided that the initial charge is zero, we recover

that the charge q remains zero at all time.

We must now eliminate the electric field E by using the zero conduction cur-

rent constraint. The conduction current j =
∑

k∈S
κkFk =

∑
k∈S

κkγkVk can

conveniently be written in the compact form

j = 〈z,V〉 ,

where z = (z1, . . . , zns)t, zk = γkκk, k ∈ S, V = (V1, . . . ,Vns)t, and 〈·, ·〉 denotes

the scalar product between quantities in Rns

or (R3)ns

. On the other hand, thanks

to isotropy of diffusive processes, the relations expressing the diffusion velocities can

be recast in the vector form

V = −D

(
d0 + χ∂x log T + z

E

p

)
,

where d0 = (d0
1, . . . ,d

0
ns)t, d0

k = (∂xpk)/p, k ∈ S, and χ = (χ1, . . . , χns)t. There-

fore, the constraint j = 0 implies that

E

p
=

〈z, D(d0 + χ∂x log T )〉
〈z, Dz〉 .

Defining the square matrix D̂ = (D̂kl)k,l by

D̂ = D − Dz ⊗ Dz

〈z, Dz〉 , (2.9)

it is readily seen that

V = −D̂(d0 + χ∂x log T ) , (2.10)

i.e. Vk = −∑l∈S
D̂kl(d

0
l +χl log T ), k ∈ S. These expressions now guarantee that

the conduction current j vanishes independently of the state variables and their

gradients.
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2.4. Thermodynamics

The pressure p, the mass density ρ and the charge per unit volume q can be

expressed as

p =
∑

k∈S

RTγk , ρ =
∑

k∈S

mkγk , q =
∑

k∈S

κkγk ,

where mk is the mass per unit mole of the kth species, κk the charge per unit mole

of the kth species, and R the perfect gas constant. The internal energy E and the

enthapy H per unit volume can be decomposed into

E =
∑

k∈S

γkEk , H =
∑

k∈S

γkHk,

where Ek and Hk = Ek +RT are the internal energy and the internal enthalpy per

unit mole of the kth species and T the absolute temperature. The internal energy

Ek can be written in the form

Ek(T ) = Est
k +

∫ T

T st

Cv,k(τ) dτ ,

where Est
k = Ek(T st) is the formation energy per unit mole of the kth species at the

positive standard temperature T st and Cv,k is the constant-volume molar specific

heat of the kth species.

The entropy S and Gibbs function G per unit volume can be expressed in terms

of the species entropies per unit mole Sk, k ∈ S, and Gibbs functions per unit mole

Gk, k ∈ S, from the relations

S =
∑

k∈S

γkSk , G =
∑

k∈S

γkGk ,

where

Sk(T, γk) = Sst
k +

∫ T

T st

Cv,k(τ)

τ
dτ − R log

(
γk

γst

)
,

Sst
k is the formation entropy at the standard temperature T st and standard pressure

pst, γst = pst/RT st is the standard concentration, and where Gk = Hk − TSk. We

also define the species reduced chemical potential µk = Gk/RT , k ∈ S. Finally, the

species Gibbs functions Gk and the species reduced chemical potential µk, k ∈ S,

are functions of γk and T , which can be written

Gk(γk, T ) = Gu
k(T ) + RT log γk , µk(γk, T ) = µu

k(T ) + log γk ,

where Gu
k , k ∈ S, are the species unitary Gibbs functions per unit mole and µu

k ,

k ∈ S, are the species unitary reduced chemical potentials.
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2.5. Chemical source terms

We consider nr elementary reactions among the ns species which can be formally

written as
∑

k∈S

νf
krMk �

∑

k∈S

νb
krMk , r ∈ R ,

where Mk is the chemical symbol of the kth species, νf
kr and νb

kr are the forward

and backward stoichiometric coefficients of the kth species in the rth reaction,

respectively and R = {1, . . . , nr} is the set of reaction indices.

The Maxwellian production rates given by the kinetic theory can be written

ωk =
∑

r∈R

(νb
kr − νf

kr)τr , k ∈ S , (2.11)

where τr is the rate of progress of the rth reaction. The rates of progress are given

by the symmetric expression8

τr = K
s
r(exp〈νf

r, µ〉 − exp〈νb
r , µ〉) , (2.12)

where νf
r = (νf

1r , . . . , ν
f
nsr)

t, νb
r = (νb

1r, . . . , ν
b
nsr)

t, µ = (µ1, . . . , µns)t, and K
s
r is the

symmetric reaction constant. We define νkr = νb
kr − νf

kr , k ∈ S, r ∈ R, and the

reaction vectors νr = (ν1r, . . . , νnsr)
t, r ∈ R, so that νr = νb

r −νf
r, and we denote by

R = span{νr, r ∈ R} the linear space spanned by the vectors νr, r ∈ R.

2.6. Mathematical assumptions

We describe in this section the mathematical assumptions concerning thermochem-

istry, and, partly, the assumptions concerning transport coefficients.

2.6.1. Assumption on thermochemistry

The species of the mixture are assumed to be constituted by neutral atoms and

electrons. We denote by A = {1, . . . , na} the atom indexing set, na the number

of atoms in the mixture, m̃l, l ∈ A, the atom masses and akl the number of lth

atoms in the kth species. We also introduce the atomic vectors al, l ∈ A, defined

by al = (a1l, . . . , ansl)
t, l ∈ A. We define ak0 as the number of electrons in the

kth species and for notational convenience, we define A = {0} ∪ A = {0, . . . , na}.
We also assume that the electron species is present in the mixture as well as one

neutral species and one positively charged species. For notational convenience, we

assume that the last species in the mixture is the electron species. Since we will

ultimately investigate the limit of vanishing electron mass, we will only assume that

the electron mass mns is non-negative. We define the mass vector m and the charge

vector κ by

m = (m1, . . . , mns)t , κ = (κ1, . . . , κns)t ,
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and the unit vector u by u = (1, . . . , 1)t. We also define the mole fraction of the kth

species xk by xk = γk/
∑

l∈S
γl, and the mass fractions of the kth species by yk =

ρk/
∑

l∈S
ρl so that yk = mkγk/

∑
l∈S

mlγl. We correspondingly define the mole

fractions vector x = (x1, . . . , xns)t and the mass fraction vector y = (y1, . . . , yns)t.

(Th1) The nonelectron species molar masses mk, k ∈ S, k 6= ns, and the gas

constant R are positive constants. The electron molar mass mns = m̃0 is non-

negative. The formation energies Est
k , k ∈ S, and the formation entropies

Sst
k , k ∈ S, are constants. The molar specific heats Cv,k, k ∈ S, are C∞

functions of T ≥ 0 and there exist positive constants cv and c̄v with 0 < cv ≤
Cv,k(T ) ≤ c̄v , for T ≥ 0 and k ∈ S.

(Th2) The atom molar masses m̃, l ∈ A, are positive constants and the species

molar masses mk, k ∈ S, are given by

mk =
∑

l∈A

m̃lakl + m̃0ak0 , k ∈ S .

We also have the proportionality relation κk = −αak0, k ∈ S, where α is a

positive constant which represents the absolute value of electron charge per

unit mole.

(Th3) The stoichiometric coefficients νf
kr and νb

kr, k ∈ S, r ∈ R, and the atomic

coefficients akl, k ∈ S, l ∈ A, are non-negative integers. The numbers of

electrons ak0, k ∈ S, l ∈ A, are integers. The atomic vectors al, l ∈ A, and

the reaction vectors νr, r ∈ R, satisfy the conservation relations 〈νr, al〉 = 0,

r ∈ R, l ∈ A. This relation expresses atom conservation for l ∈ A and charge

conservation for l = 0.

(Th4) The rate constants K
s
r, r ∈ R, are C∞ positive functions of T > 0.

(Th5) There exists at least a positive ionized species such that κk > 0, a neutral

species such that κk = 0, and we assume that the last species is constituted

by electrons so that κns < 0.

These assumptions imply in particular the vector properties al ∈ R⊥, l ∈ A,

and a0 ∈ R⊥, where R = span{νr, r ∈ R}. In addition, we have the vector relations

m =
∑

l∈A
m̃lal + m̃0a0, so that m ∈ R⊥, and κ = −αa0, so that κ ∈ R⊥. Note

that with (Th5) the vectors ρy = (ρ1, . . . , ρns)t and z = (z1, . . . , zns)t are linearly

independent, as are the vectors m and κ. Defining m′
k =

∑
l∈A

m̃lakl and ρ′ =∑
1≤k≤ns−1 m′

kγk we also have ρ = ρ′ − m̃0q/α. Finally, the presence of a neutral

species in the model is not strictly needed, but somewhat simplifies the presentation,

especially for deriving explicit normal forms.

2.6.2. Assumptions on transport coefficients

We introduce a first set of assumptions concerning the transport coefficients which

is only valid for positive electron mass. These assumptions will be generalized in

order to encompass the limiting case of zero electron mass in the next section.
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(tr1) The multicomponent diffusion coefficients Dkl, k, l ∈ S, the thermal diffusion

ratios χk, k ∈ S, the volume viscosity κ, the shear viscosity η and the thermal

conductivity λ are C∞ functions of (T, γ), where γ = (γ1, . . . , γns)t, for T > 0

and γ > 0.

(tr2) The thermal conductivity λ and the shear viscosity η are positive functions.

The volume viscosity κ is a non-negative function.

(tr3) For γ > 0 and T > 0, the matrix D = (Dkl)k,l is real symmetric positive

semidefinite and its null space is spanned by the vector y = (y1, . . . , yns)t. The

thermal diffusion ratios χk, k ∈ S, verify the relation 〈χ, u〉 = 0.

These properties have important consequences for the matrix D̂ of effective

diffusion coefficients defined in (2.9).

Lemma 2.1. Under Assumptions (Th1)–(Th5) and (tr1)–(tr3) the matrix D̂ is sym-

metric positive semidefinite. Its null space is spanned by the vectors y and z, where

zk = γkκk, k ∈ S, so that N(D̂) = Ry ⊕ Rz and R(D̂) = span(y, z)⊥.

Proof. First note that y and z are nonzero since γ > 0 and are not propor-

tional since there exists positively as well as negatively charged species. This

implies that 〈Dz, z〉 > 0 so that D̂ is well defined. After a little algebra, we

obtain that

〈D̂x, x〉 =

〈
D

(
x − 〈Dx, z〉

〈Dz, z〉z
)

, x − 〈Dx, z〉
〈Dz, z〉z

〉
.

The properties of D̂ are then directly deduced from the properties of D.

2.7. Quasilinear formulation

The relations (2.9), (2.10) imply that conduction current j vanishes, so that the

charge q remains zero if it is initially zero. As a consequence, the momentum and

energy conservation equations can be simplified into

∂t(ρv) + ∂x · (ρv ⊗ v + pI) + ∂x ·Π = 0 , (2.13)

∂t

(
E +

1

2
ρv · v

)
+ ∂x ·

((
E +

1

2
ρv · v + p

)
v

)
+ ∂x · (Q + Π · v) = 0 . (2.14)

Whenever neutrality holds, one could further express γns in terms of the heavy

species molar densities, and eliminate completely the electrons from the governing

equations. This simplification, however, will not be used in this paper, since it

forbids symmetrization of the resulting system of partial differential equations.

Similarly, since the mass density can be written as ρ = ρ′ − m̃0q/α where ρ′ =∑ns−1
K=1 m′

kγk, one could use ρ′ instead of ρ in the governing equations, but this

simpler formulation is not needed in the following.
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We introduce a compact notation that will be used in the following. We define

the conservative variable U by

U =

(
γ1, . . . , γns , ρv1, ρv2, ρv3, E +

1

2
ρv · v

)
t

, (2.15)

and the natural variable Z by

Z = (γ1, . . . , γns , v1, v2, v3, T )t . (2.16)

The components of U naturally appear as conserved quantities in the molar

formulation of the system of partial differential equations governing ambipolar plas-

mas. On the other hand, the components of the natural variable Z are more practical

to use in actual calculations of differential identities.

The conservation equations can be written in the compact form

∂tU +
∑

i∈C

∂iFi +
∑

i∈C

∂iF
diss
i = Ω , (2.17)

where C denotes the set {1, 2, 3}, Fi the convective flux in the ith direction, Fdiss
i

the dissipative flux in the ith direction, and Ω is the source term. The source term

Ω is given by

Ω = (ω1, . . . , ωns , 0, 0, 0, 0)t , (2.18)

and the convective flux Fi by

Fi =

(
γ1vi, . . . , γnsvi, ρv1vi + δi1p, ρv2vi

+ δi2p, ρv3vi + δi3p,

(
E +

1

2
ρv · v + p

)
vi

)
t

. (2.19)

The dissipative flux Fdiss
i can de decomposed into

Fdiss
i = Fdiff

i + Fvisc
i , (2.20)

where Fvisc
i , the viscous flux, and Fdiff

i , the diffusion flux, are defined by

Fvisc
i =

(
0, . . . , 0, Πi1, Πi2, Πi3,

∑

j∈C

Πijvj

)
t

Fdiff
i = (F1i, . . . ,Fnsi, 0, 0, 0,Qi)

t .

The convective and dissipative fluxes are naturally given in terms of the natural

variable Z. In order to relate the natural variable Z to the conservative variable U,

we investigate the map Z 7→ U. We introduce the open sets OZ and OU defined by

OZ = (R∗
+)ns × R3 × R∗

+ ,

OU = {u ∈ Rns+4 : u1, . . . , uns > 0, uns+4 > f(ui)} ,



2nd Reading
August 11, 2004 17:2 WSPC/103-M3AS 00365

Asymptotic Stability of Equilibrium States for Ambipolar Plasmas 1371

where f is the map from (R∗
+)ns × R3 in R given by

f(u) =
1

2

u2
ns+1 + u2

ns+2 + u2
ns+3∑

i∈S
miui

+
∑

i∈S

uiE
0
i , (2.21)

and E0
i is the internal energy per unit mole at zero temperature. The following

lemma is easily established as in the neutral case.11

Lemma 2.2. Assume that properties (Th1)–(Th5) hold. The map Z 7→ U is a C∞

diffeomorphism from the open set OZ onto the open convex set OU.

As a consequence of this lemma, and from the expressions of convective and

dissipative fluxes in terms of Z, we can rewrite (2.17) as a quasilinear form in the

conservative variable U

∂tU +
∑

i∈C

Ai(U)∂iU =
∑

i,j∈C

∂i(Bij(U)∂jU) + Ω(U) , (2.22)

where Ai = ∂UFi, Fdiss
i = −∑j∈C Bij(U)∂jU, i ∈ C, and where Ai, i ∈ C, Bij ,

i, j ∈ C and Ω are smooth.

3. Vanishing Electron Mass

The asymptotic stability of equilibrium states for the quasilinear system of partial

differential equations modeling ambipolar plasmas (2.22) is, in itself, an important

question. We note, however, that this system also depends on numerous parameters

such as thermal conductivity and chemical reaction rate constants. This is a strong

motivation for further investigating the dependence of solutions on the system pa-

rameters. This will be done in the next sections under the assumption that the

system coefficients depend smoothly on the parameters under consideration.

One of these parameters, often used in the physical modeling, is the electron

mass mns = m̃0, which is generally assumed to be zero. In order to investigate

this limit, the dependence of the system coefficients on the electron mass must be

clarified. The thermodynamic assumptions (Th1)–(Th5) can be used for any non-

negative electron mass and need not be modified. However, the transport properties

(th1)–(th3) are only valid for positive electron mass and must be replaced.

In order to do so, we need to express the dependence of multicomponent diffusion

matrices on binary diffusion coefficients explicitly and investigate the limit of the

diffusion coefficients D̂ for vanishing electron mass.

3.1. Definition of D as a generalized inverse

We introduce the matrix ∆ defined by
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



∆kk =
∑

l∈S

l6=k

xkxl

Dbin
kl

, k ∈ S ,

∆kl = − xkxl

Dbin
kl

, k, l ∈ S, k 6= l ,

(3.1)

where Dbin
kl is the binary diffusion coefficient for the species pair (k, l) and xk the

mole fraction of the kth species given by xk = γk/
∑

l∈S
γl. These coefficients

Dbin
kl are only defined for positive species masses. In a first-order theory, Dbin

kl only

depends on pressure and temperature Dbin
kl = Dbin

kl (T, p). More generally, for more

accurate multicomponent diffusion coefficients, the quantities Dbin
kl , k, l ∈ S, are

Schur complements from transport linear systems of size larger than ns, and are

then functions of T , p and γ, but have similar properties.4 The following properties

of the matrix ∆ are easily established.7,8

Proposition 3.1. Assume that the coefficients Dbin
kl , k, l ∈ S, k 6= l, are positive

and symmetric, and that γ > 0. Then ∆ is symmetric positive semidefinite, N(∆) =

Ru where u = (1, . . . , 1)t, R(∆) = u⊥, ∆ is irreducible and a singular M -matrix.

We define the mass fractions by yk = ρk/
∑

l∈S
ρl so that yk = mkγk/

∑
l∈S

mlγl and the mass fraction vector y = (y1, . . . , yns)t. The multicomponent diffusion

matrix D can then be defined as a proper generalized inverse of ∆.7,8

Proposition 3.2. Keeping the assumptions of Proposition 3.1 there exists a unique

generalized inverse D of ∆ with prescribed range y⊥ and null space Ry, i.e. a the

unique matrix D such that D∆D = D, ∆D∆ = ∆, R(D) = y⊥, and N(D) = Ry.

This matrix D is positive semidefinite, we have ∆D = I − y ⊗ u, D∆ = I − u ⊗ y,

and for a, b positive with ab = 1, we have D = (∆ + ay ⊗ y)−1 − bu ⊗ u. The

coefficients of D are smooth functions of (T, γ) for T > 0, γ > 0, provided that the

binary diffusion coefficients are smooth functions of (T, γ) so that the assumptions

concerning D in (tr1)–(tr3) hold.

These results can easily be extended to the case of the matrix D̂. More specif-

ically, when neutrality holds, i.e. q = 〈z, u〉 = 0, there exists a unique w such that

∆w = z and 〈w, y〉 = 0. Introducing the matrix ∆̂ = ∆ − z ⊗ z/〈w, z〉, one can

establish that D̂ is the generalized inverse of ∆̂ with prescribed null space Ry⊕Rz

and range span(y, z)⊥. However, these results will not be needed in the following

where we will directly use the relation (2.9) defining D̂ from D.

On the other hand, from the kinetic theory of gases we have

Dbin
kl = O

(
1√

mkml

)
, (3.2)

and the quantity Dbin
kl

√
mkml can be assumed to be smooth. Therefore, electron

diffusivities Dbin
kns , k ∈ S, k 6= ns, explode for vanishing electron mass mns → 0.
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3.2. Diffusion matrices for vanishing electron mass

In this section, we specify the assumptions concerning the asymptotic limit of

vanishing electron mass. We define the small parameter ε by

ε = (mns/m̄)1/2 ,

where m̄ is a characteristic mass of heavy species, i.e. nonelectron species, and we

investigate the behavior of the system coefficients as ε → 0. We will denote by [0, ε̄]

an interval of relevant values for ε such that heavy species masses stay away from

zero, so that (Th1)–(Th5) are satisfied, where ε̄ > 0 is fixed. From relations (3.2),

electron diffusivities Dbin
kns , k ∈ S, k 6= ns, goes to infinity as ε → 0 and we set





Dbin
kl = Ďbin

kl , k 6= l, k 6= ns and l 6= ns ,

Dbin
kl =

1

ε
Ďbin

kl , k 6= l, k = ns or l = ns ,
(3.3)

where the coeffcients Ďbin
kl are assumed to be smooth functions of the state variables

T > 0, γ > 0 and of the parameter ε ∈ [0, ε̄]. The properties (tr1)–(tr3) only hold

for positive species mass, that is for ε > 0 and we have now to establish that D̂

depends smoothly on the reduced mass ε and to identify its limit as ε → 0, thereby

removing the singular behavior at ε = 0.

In order to investigate the limit of D̂ as ε → 0, it is convenient to introduce a

partitioning of the species S = {1, . . . , ns} between heavy species h = {1, . . . , ns−1}
and electrons e = {ns}. Correspondingly, there is a block decomposition of vectors

x ∈ R
ns

in the form x = (xh, xe)t and of matrices M ∈ R
n,n such that y = Mx if

and only if yh = Mhhxh + Mhexe and ye = M ehxh + M eexe. The matrix ∆ admits

in particular the block decomposition

∆ =

(
∆hh ∆he

∆eh ∆ee

)
=

(
∆̌hh ε∆̌he

ε∆̌eh ε∆̌ee

)
, (3.4)

where the coefficients of ∆̌ are smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]

and are defined as in (3.1) with Dbin
kl replaced by Ďbin

kl . We will denote by ∆hh
0 the

matrix ∆hh = ∆̌hh obtained for ε = 0, and by yh
0 the vector yh obtained for ε = 0,

keeping in mind that mk, k ∈ S, depend on ε from (Th2).

Proposition 3.3. Assume that the coefficients Ďbin
kl , k, l ∈ S, k 6= l, are positive

and symmetric, and smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]. There exists

coefficients Ď which are smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄] such that

for any ε > 0 we have

D =




Ďhh Ďhe

Ďeh 1

ε
Ďee


 .

Moreover, the matrix Ďhh
0 obtained for ε = 0 is the diffusion matrix between heavy

species in the absence of electrons, i.e. Ďhh
0 is the generalized inverse of ∆hh

0 with
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null space Ryh
0 and range (yh

0)⊥. Finally the scalar coefficient Ďee
0 obtained for ε = 0

if a positive function of T > 0 and γ > 0.

Proof. From (3.4) we can introduce the matrices

∆up =

[
∆̌hh ε∆̌he

∆̌eh ∆̌ee

]
, ∆lo =

[
∆̌hh ∆̌he

ε∆̌eh ∆̌ee

]
,

which are smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]. From the properties of

∆, it is easily obtained that for ε ∈ [0, ε̄] we have N(∆up) = Ru, R(∆up) = ũ⊥,

N(∆lo) = Rũ, R(∆lo) = u⊥, where we have defined ũ = (uh, ε)t. From the definition

of ε we also have y = (yh, ye)t with ye = ε2y̌e where y̌e is independent of ε, and we

define ỹ = (yh, εy̌e)t. We now introduce the generalized inverse Dup of ∆up with

range R(Dup) = y⊥ and null space N(Dup) = Rỹ, and the generalized inverse Dlo of

∆lo with range R(Dlo) = ỹ⊥ and null space N(Dlo) = Ry. These matrices Dup and

Dlo are well defined for any ε ∈ [0, ε̄] since N(∆up)⊕y⊥ = Rns

, R(∆up)⊕Rỹ = Rns

,

N(∆lo) ⊕ ỹ⊥ = Rns

, R(∆lo) ⊕ Ry = Rns

, thanks to 〈y, u〉 = 〈ỹ, ũ〉 = 1. In addition,

these matrices Dup and Dlo are smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]

since for any positive α, β with αβ = 1 we have

(Dlo + αũ ⊗ u)(∆lo + βy ⊗ ỹ) = (Dup + αu ⊗ ũ)(∆up + βỹ ⊗ y) = I .

Denoting by M the diagonal matrix M = diag(1, . . . , 1, ε), it is easily seen that for

any positive ε we have ∆ = M∆up = ∆loM and D = DupM−1 = M−1Dlo. These

relations yield in particular that Dup = (Dlo)t so that Dhh = (Dup)hh = (Dlo)hh,

Dhe = (Dup)he/ε = (Dlo)he, Deh = (Dup)eh = (Dlo)eh/ε, and Dee = (Dup)ee/ε =

(Dlo)ee/ε. This shows in particular that Dhh, Dhe, and Deh are smooth functions of

T > 0, γ > 0 and ε ∈ [0, ε̄]. The identification of ∆hh
0 results from simple algebraic

manipulations making use of the properties of D and ∆, thanks to mns = m̄ε2.

In addition, we have for ε = 0 that (Dup
0 )ee = (Dlo

0 )ee = 1/∆ee
0 and it is easily

deduced from the general properties of diagonal diffusion coefficients8 that (∆up)ee

is a positive function of T > 0, γ > 0 and ε ∈ [0, ε̄].

We can now establish that D̂ is a smooth function of T > 0, γ > 0 and ε ∈ [0, ε̄].

Proposition 3.4. Assume that the coefficients Ďbin
kl , k, l ∈ S, k 6= l, are positive,

symmetric, and smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]. Then the matrix

D̂ is a smooth function of T > 0, γ > 0, ε ∈ [0, ε̄]. Moreover, defining zk = zk/zns

for k ∈ {1, . . . , ns − 1}, its limit as ε → 0 is given by

lim
ε→0

D̂(ε) =

[
Ďhh

0 −Ďhh
0 zh

−(Ďhh
0 zh)t 〈Ďhh

0 zh, zh〉

]
.

Proof. The smoothness of D̂ for positive ε is a direct consequence of the smooth-

ness of D. The only nontrivial part of this proposition concerns the behavior for
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small ε. We first note that

〈Dz, z〉 =
(ze)2

ε
(Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉) ,

so that for the block D̂hh it is easily obtained that

D̂hh = Ďhh − ε
(Ďhhzh + Ďhe) ⊗ (Ďhhzh + Ďhe)

Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉
.

This expression shows that D̂hh is smooth up to ε = 0 and converges to D̂hh
0 as

ε → 0. For the term D̂he we can write that

D̂he = Ďhe − (Ďhhzh + Ďhe)(Ďee + εĎehzh)

Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉
,

so that D̂he is smooth up to ε = 0 and converge to −D̂hh
0 zh

0 as ε → 0. Thanks to

the symmetry of D̂, the term D̂eh is similar. Finally, the last term reads

D̂ee =
1

ε

(
Ďee − (Ďee + εĎehzh)2

Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉

)

and can be recast in the form

D̂ee =
Ďee〈Ďhhzh, zh〉 − ε(Ďehzh)2

Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉
,

and there is a cancellation of singularity. This term is thus smooth up to ε = 0 and

converges to 〈Ďhh
0 zh, zh〉 as ε → 0.

Remark 3.1. The limiting transport coefficients obtained with D̂hh
0 can also be

obtained by letting dns = 0, so that E = pd0
ns/zns , and by substituting this rela-

tion in the expression of the diffusion velocities (2.5), (2.6). This relation can also

be obtained by letting the electron mass to go to zero in an electron momentum

conservation equation.

3.3. Assumptions for vanishing electron mass

As a consequence of the results obtained in the preceding sections, we can reformu-

late the assumptions on transport coefficients as follows:

(Tr1) The effective multicomponent diffusion coefficients D̂kl, k, l ∈ S, the thermal

diffusion ratios χk, k ∈ S, the volume viscosity κ, the shear viscosity η, and

the conductivity λ are C∞ functions of T > 0, γ > 0 and ε ∈ [0, ε̄].

(Tr2) The thermal conductivity λ and the shear viscosity η are positive functions.

The volume viscosity κ is a non-negative function.

(Tr3) For γ > 0, T > 0, and ε ∈ [0, ε̄], the matrix D̂ = (D̂)k,l is real symmetric

positive semidefinite and its null space is spanned by the vectors y and z. The

thermal diffusion ratios χk, k ∈ S, verify the relation 〈χ, u〉 = 0.
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We can finally rewrite the quasilinear system (2.22) in the form

∂tU +
∑

i∈C

Ai(U, ε)∂iU =
∑

i,j∈C

∂i(Bij(U, ε)∂jU) + Ω(U, ε) , (3.5)

where we have emphasized the dependence of the coefficients on the reduced electron

mass parameter ε. The system coefficients of (3.5) are naturally defined in the open

domain (U, ε) ∈ O(U,ε) where

O(U,ε) = {(U, ε) ∈ R
ns+4 : U1, . . . , Uns > 0, ε > 0, Uns+4 > f(U1, . . . , Uns+3, ε)} ,

where f is the map introduced in (2.21) which depends on ε through the species

mass mk, k ∈ S. We have seen, in addition, that the system coefficients can be

smoothly extended up to ε = 0.

4. Local Existence for an Abstract System

In this section, we investigate symmetrization and local existence of solutions for

hyperbolic–parabolic systems depending on a parameter.

4.1. Conservative symmetrization

We consider an abstract second-order quasilinear system depending on a parameter

in the form

∂tU
∗ +

∑

i∈C∗

A∗
i (U

∗, ε∗)∂iU
∗ =

∑

i,j∈C∗

∂i(B
∗
ij(U

∗, ε∗)∂jU
∗) + Ω∗(U∗, ε∗) , (4.1)

where (U∗, ε∗) ∈ O(U∗,ε∗), O(U∗,ε∗) is an open set of Rn∗ × Rm∗

, and C∗ = {1, . . . , d}
denotes the direction indices of Rd. Note that the superscript ∗ is used to distinguish

between the abstract second-order system (4.1) of size n∗ in R
d with ε∗ of size m∗

and the particular ambipolar plasmas system (3.5) of size ns + 4 in R
3 with ε the

reduced electron mass. All quantities associated with the abstract system have

the corresponding superscript ∗, so that, for instance, the unknown vector is U∗.

We consider open domains O(U∗,ε∗), for the sake of simplicity, and assume that the

slices Oε∗

U∗ = {U∗ ∈ Rn∗

; (U∗, ε∗) ∈ O(U∗,ε∗)} are convex for all ε∗. We assume that

the following properties hold for system (4.1).

(Edp1) The convective fluxes F∗
i , i ∈ C∗, dissipation matrices B∗

ij , i, j ∈ C∗, and

source term Ω∗ are smooth functions of the variable (U∗, ε∗) ∈ O(U∗,ε∗).

The following definition of a symmetric (conservative) form for the system (4.1)

is adapted from Kawashima and Shizuta.14

Definition 4.1. Consider a C∞ dipheomorphism (U∗, ε∗) → (V∗, ε∗) from the open

domain O(U∗,ε∗) onto an open domain O(V∗,ε∗) and consider the system in the V∗

variable

Ã∗
0(V

∗, ε∗)∂tV
∗ +

∑

i∈C∗

Ã∗
i (V

∗, ε∗)∂iV
∗ =

∑

i,j∈C∗

∂i(B̃
∗
ij(V

∗, ε∗)∂jV
∗) + Ω̃∗(V∗, ε∗) , (4.2)
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where
{

Ã∗
0 = ∂V∗U∗ , Ã∗

i = A∗
i ∂V∗U∗ = ∂V∗F∗

i ,

B̃∗
ij = B∗

ij∂V∗U∗ , Ω̃∗ = Ω∗ .
(4.3)

The system is said of symmetric form if the matrices Ã∗
0, Ã∗

i , i ∈ C∗, and B̃∗
ij ,

i, j ∈ C∗, verify the following properties (S1)–(S4).

(S1) The matrix Ã∗
0(V

∗, ε∗) is symmetric positive definite for (V∗, ε∗) ∈ O(V∗,ε∗).

(S2) The matrices Ã∗
i (V

∗, ε∗), i ∈ C∗, are symmetric for (V∗, ε∗) ∈ O(V∗,ε∗).

(S3) We have B̃∗
ij(V

∗, ε∗)t = B̃∗
ji(V

∗, ε∗) for i, j ∈ C∗, and (V∗, ε∗) ∈ O(V∗,ε∗).

(S4) The matrix B̃∗(V∗, ε∗, w) =
∑

i,j∈C∗ B̃∗
ij(V

∗, ε∗)wiwj is symmetric and positive

semidefinite, for (V∗, ε∗) ∈ O(V∗,ε∗), and w ∈ Σd−1, where Σd−1 is the unit

sphere in d dimensions.

The following generalized definition of an entropy function is adapted from

Kawashima13 and Kawashima and Shizuta.14

Definition 4.2. Consider a C∞ function σ∗(U∗, ε∗) defined over the open domain

O(U∗,ε∗) such that the slices Oε∗

U∗ = {U∗ ∈ Rn∗

; (U∗, ε∗) ∈ O(U∗,ε∗)} are convex. The

function σ∗ is said to be an entropy function for the system (4.1) if the following

properties hold.

(E1) The function σ∗ is a strictly convex function of U∗ ∈ Oε∗

U∗ in the sense that

the Hessian matrix is positive definite in each slice Oε∗

U∗ .

(E2) There exists real-valued C∞ functions q∗
i = q∗i (U

∗, ε∗) such that

(∂U∗σ∗)A∗
i = ∂U∗q∗i , i ∈ C∗ , (U∗, ε∗) ∈ O(U∗,ε∗) .

(E3) We have the property that, for any (U∗, ε∗) ∈ O(U∗,ε∗)

(∂2
U∗σ∗)−1(B∗

ij)
t = B∗

ji(∂
2
U∗σ∗)−1 , i, j ∈ C∗ .

(E4) The matrix B̃∗ =
∑

i,j∈C∗ B∗
ij(U

∗, ε∗)(∂2
U∗σ∗(U∗, ε∗))−1wiwj is symmetric posi-

tive semidefinite for any (U∗, ε∗) ∈ O(U∗,ε∗) and w ∈ Σd−1.

Kawashima and Shizuta have established8,14 the equivalence between conserva-

tive symmetrizability and the existence of an entropy function. For systems depen-

ding on a parameter ε∗, some limitations on the domains O(U∗,ε∗) seem necessary,

like the smoothness of the slices ε∗ → Oε∗

U∗ , using local charts. In order to avoid such

technicalities, we only give a simplified version of an equivalence theorem, sufficient

for our application to ambipolar plasmas.

Theorem 4.3. Assume that the system (4.1) admits an entropy function σ∗ de-

fined over O(U∗,ε∗). Then, the system can be symmetrized over O(U∗,ε∗) with the

symmetrizing variable V∗ = (∂U∗σ∗)t. Conversely, assume that the system can be

symmetrized, and that, for the sake of simplicity, the open O(V∗,ε∗) is in the form

O(V∗,ε∗) = OV∗ × Oε∗ where OV∗ ⊂ Rn∗

is independent of ε∗ and Oε∗ ⊂ Rm∗
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independent of V∗. Then there exists an entropy defined on O(U∗,ε∗) such that

V∗ = (∂U∗σ∗)t.

4.2. Normal form

We assume that the abstract quasilinear system (4.1) satisfies

(Edp2) The system (4.1) admits an entropy function σ∗ on the open set O(U∗,ε∗) and

the slices Oε∗

U∗ = {U∗ ∈ R
n∗

; (U∗, ε∗) ∈ O(U∗,ε∗)} are convex.

Introducing the symmetrizing variable V∗ = (∂U∗σ∗)t, the corresponding symmetric

system (4.2) then satisfies Properties (S1)–(S4). However, depending on the range

of the dissipation matrices B̃∗
ij , this system lies between the two limit cases of a

hyperbolic system and a strongly parabolic system. In order to split the variables

between hyperbolic and parabolic variables, we have to put the system into a normal

form, in the form of a symmetric hyperbolic–parabolic composite system.

Introducing a new variable W∗, associated with a diffeomorphism from O(V∗,ε∗)

onto O(W∗,ε∗), and multiplying the conservative symmetric form (4.2) on the left side

by the transpose of the matrix ∂W∗V∗, we then get a new system in the variable W∗

and have the following definition of a normal form.14

Definition 4.4. Consider a system in symmetric form, as in Definition 4.1, and

a diffeomorphism (V∗, ε∗) → (W∗, ε∗) from O(V∗,ε∗) onto an open set O(W∗,ε∗). The

system in the new variable W∗

A
∗

0(W
∗, ε∗)∂tW

∗ +
∑

i∈C∗

A
∗

i (W
∗, ε∗)∂iW

∗ =
∑

i,j∈C∗

∂i(B
∗

ij(W
∗, ε∗)∂jW

∗)

+ T ∗
(W∗, ε∗, ∂xW∗) + Ω

∗
(W∗, ε∗) , (4.4)

where




A
∗

0 = (∂W∗V∗)tÃ∗
0(∂W∗V∗) , B

∗

ij = (∂W∗V∗)tB̃∗
ij(∂W∗V∗) ,

A
∗

i = (∂W∗V∗)tÃ∗
i (∂W∗V∗) , Ω

∗
= (∂W∗V∗)tΩ̃∗ ,

T ∗
= −

∑

i,j∈C∗

∂i(∂W∗V∗)tB̃∗
ij(∂W∗V∗)∂jW

∗ ,

(4.5)

satisfies properties (S1)–(S4) rewritten in terms of overbar quantities. This system

is then said to be of the normal form if there exists a partition of {1, . . . , n∗} into

I = {1, . . . , n∗
0} and II = {n∗

0 + 1, . . . , n∗} such that the following properties hold.

(Nor1) The matrices A
∗

0 and B
∗

ij have the block structure

A
∗

0 =


A

∗i,i

0 0

0 A
∗ii,ii

0


 , B

∗

ij =

(
0 0

0 B
∗ii,ii

ij

)
.
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(Nor2) The matrix B
∗ii,ii

(W ∗, ε∗, w) =
∑

i,j∈C∗ B
∗ii,ii

ij (W ∗, ε∗)wiwj is positive defi-

nite, for (W∗, ε∗) ∈ O(W∗,ε∗), and w ∈ Σd−1.

(Nor3) Denoting ∂x = (∂1, . . . , ∂d)
t, we have

T ∗
(W∗, ε∗, ∂xW∗) = (T ∗

i (W
∗, ε∗, ∂xW∗

ii), T
∗

ii(W
∗, ε∗, ∂xW∗))t ,

where we have used the vector and matrix block structures induced by the parti-

tioning of {1, . . . , n∗} into I = {1, . . . , n∗
0} and II = {n∗

0 + 1, . . . , n∗}, so that we

have W∗ = (W∗
i , W

∗
ii)

t, for instance.

A sufficient condition for system (4.2) to be recast into a normal form is that, for

any fixed value of ε∗, the null space naturally associated with dissipation matrices

is a fixed subspace of Rn∗

. This is Condition N introduced by Kawashima and

Shizuta, which is now assumed to hold. We strenghen this condition by assuming

that there exists a smooth explicit representation of this null space in terms of ε∗.

(Edp3) The null space of the matrix

B̃∗(V ∗, ε∗, w) =
∑

i,j∈C∗

B̃∗
ij(V

∗, ε∗)wiwj ,

does not depend on V∗ and w ∈ Σd−1, we denote by n∗
0 its dimension n∗

0 =

dim(N(B̃∗)), and we have B̃∗
ij(V

∗, ε∗)N(B̃∗) = 0, i, j ∈ C∗. Furthermore,

there exists a C∞ application ε∗ → P(ε∗) such that the first n∗
0 columns of

P(ε∗) span the null space N(B̃∗).

In order to characterize more easily normal forms for symmetric systems of con-

servation laws satisfying (Edp1)–(Edp3) we introduce the auxiliary variables8,11

U∗′ = PtU∗ and V∗′ = P−1V. The dissipation matrices corresponding to these

auxiliary variables have nonzero coefficients only in the lower right block of size

n∗ − n∗
0, where n∗

0 = dim(N(B̃∗)). Normal symmetric forms are then equivalently

— and more easily — obtained from the V∗′ symmetric equation.8,11 A careful ex-

amination of the proof in Giovangigli and Massot reveals that the following theorem

holds.

Theorem 4.5. Consider a system of conservation laws (4.2) that is symmetric

in the sense of Definition 4.1 and assume that the null space invariance property

(Edp3) is satisfied. Denoting by U∗′ = PtU∗ and V∗′ = P−1V, the usual auxiliary

variable, any normal form of the system (4.2) is given by a change of variable in

the form

W∗ = (φi(U
∗′
i , ε∗), φii(V

∗′
ii , ε

∗))t ,

where φi and φii are two diffeomorphisms of R
n∗

0 × R
m∗

0 and R
n∗−n∗

0 × R
m∗

0 ,

respectively, and we have

T ∗
(W∗, ε∗, ∂xW∗) = (0, T ∗

ii(W
∗, ε∗, ∂xW∗

ii))
t .
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4.3. Local existence

In this section we investigate local existence of solutions around equilibrium states

and the continuous dependence of solutions with respect to a parameter. We con-

sider a system of conservation laws satisfying (Edp1)–(Edp3) and the additional

property:

(Edp4) The system (4.1) admits an equilibrium point U∗e independent of ε∗.

We will denote by V∗e and W∗e the equilibrium point in the V∗ and W∗ variables

respectively. We assume for convenience that the domain O(W∗,ε∗) contains a subset

in the form OW∗ × Kε∗ where OW∗ is an open set of Rn∗

independent of ε∗, such

that W∗e ∈ OW∗ , and Kε∗ is a compact set of R
m∗

. In the following, we investigate

the dependence of local solutions on the parameter ε∗. We will denote by ‖ • ‖l the

norm in the Sobolev space W l
2(R

d) and otherwise ‖ • ‖A in the functional space A.

Theorem 4.6. Let d ≥ 1 and l ≥ [d/2] + 2 be integers and let b > 0 be given. Let

O0 be given such that O0 ⊂ OW∗ , d1 such that 0 < d1 < d(O0, ∂OW∗), and define

O1 = {W∗ ∈ OW∗ ; d(W∗,O0) < d1}. Then there exists τ̄ > 0 small enough, which

only depend on O1, b and Kε∗ , such that for any W∗0 with ‖W∗0 − W∗e‖l < b and

W∗0 ∈ O0, and any ε∗ ∈ Kε∗ , there exists a unique local solution W∗ to the system

A
∗

0∂tW
∗ +

∑

i∈C∗

A
∗

i ∂iW
∗ =

∑

i,j∈C∗

∂i(B
∗

ij∂jW
∗) + T ∗

+ Ω
∗
,

with initial condition

W∗(0, x) = W∗0(x) ,

such that

W∗(t, x) ∈ O1

and

W∗
i − W∗e

i ∈ C0([0, τ̄ ], W l
2(R

d)) ∩ C1([0, τ̄ ], W l−1
2 (Rd)) ,

W∗
ii − W∗e

ii ∈ C0([0, τ̄ ], W l
2(R

d)) ∩ C1([0, τ̄ ], W l−2
2 (Rd)) ∩ L2((0, τ̄ ), W l+1

2 (Rd)) .

In addition, there exists C > 0 which only depend on O1, b and Kε∗ , such that

sup
0≤τ≤τ̄

‖W∗(τ) − W∗e‖2
l +

∫ τ̄

0

‖W∗
ii(τ) − W∗e

ii ‖2
l+1 dτ ≤ C‖W∗0 − W∗e‖2

l . (4.6)

Finally, if W∗ is the solution corresponding to the initial state W∗0(x) and parameter

ε∗ and Ŵ∗ is the solution corresponding to the initial state Ŵ∗0(x) and parameter

ε̂∗, we have the estimate

sup
0≤τ≤τ̄

‖W∗(τ) − Ŵ∗(τ)‖2
l−1 +

∫ τ̄

0

‖W∗
ii(τ) − Ŵ∗

ii(τ)‖2
l dτ

≤ C(‖W∗0 − Ŵ∗0‖2
l−1 + δ2

l−1(ε
∗, ε̂∗)) , (4.7)
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where C > 0 only depends O1, b and Kε∗ , and where

δl−1(ε
∗, ε̂∗) = |A∗

0(·, ε∗) − A
∗

0(·, ε̂∗)|Cl−1(O1) +
∑

i∈C∗

|A∗

i (·, ε∗) − A
∗

i (·, ε̂∗)|Cl−1(O1)

+
∑

i,j∈C∗

|B∗

ij(·, ε∗) − B
∗

ij(·, ε̂∗)|Cl−1(O1)
+ |Ω∗

(·, ε∗) − Ω
∗
(·, ε̂∗)|Cl−1(O1)

.

Proof. Solutions to the nonlinear system (4.4) are fixed points W̃ = W of the

linear equations13





A
∗i,i

0 (W∗, ε)∂tW̃
∗
i +

∑

i∈C∗

A
∗i,i

i (W∗, ε∗)∂iW̃
∗
i = f∗i (W∗, ∂xW∗

ii, ε
∗) ,

A
∗ii,ii

0 (W∗, ε∗)∂tW̃
∗
ii −

∑

i,j∈C∗

B
∗ii,ii

ij (W∗, ε∗)∂i∂jW̃
∗
ii = f∗ii(W

∗, ∂xW∗, ε∗) ,
(4.8)

with

f∗i = −
∑

i∈C∗

A
∗i,ii

i (W∗, ε∗)∂iW
∗
ii + Ω

∗

i (W
∗, ε∗) ,

f∗ii = −
∑

i∈C∗

A
∗ii,ii

i (W∗, ε∗)∂iW
∗
ii −

∑

i∈C∗

A
∗ii,i

i (W∗, ε∗)∂iW
∗
i

+ T ∗

ii(W
∗, ε∗, ∂xW∗) + Ω

∗

i (W
∗, ε∗) +

∑

i,j∈C∗

∂i

(
B
∗ii,ii

ij

)
∂jW

∗
ii ,

which are hyperbolic in W̃∗
i and strongly parabolic in W̃∗

ii. Fixed points are investi-

gated in the space W∗ ∈ Xτ̄ (O1, M, M1) defined by W∗
i −W∗e

i ∈ C0([0, τ̄ ], W l
2(R

d)),

∂tW
∗
i ∈ C0([0, τ̄ ], W l−1

2 (Rd)), W∗
ii−W∗e

ii ∈ C0([0, τ̄ ], W l
2(R

d))∩L2((0, τ̄ ), W l+1
2 (Rd)),

∂tW
∗
ii ∈ C0([0, τ̄ ], W l−2

2 (Rd)) ∩ L2((0, τ̄), W l−1
2 (Rd)), W∗(t, x) ∈ O1,

sup
0≤τ≤τ̄

‖W∗(τ) − W∗e‖2
l +

∫ τ̄

0

‖W∗
ii(τ) − W∗e

ii ‖2
l+1 dτ ≤ M2

and
∫ τ̄

0

‖∂tW
∗(τ)‖2

l−1 dτ ≤ M2
1 .

For W∗ in Xτ̄ (O1, M, M1), and 2 ≤ k ≤ l, we have the estimates13

‖W̃∗(t) − W∗e‖2
k +

∫ t

0

‖W̃∗
ii(τ) − W∗e

ii ‖2
k+1 dτ ≤ C2

1 exp(C2(t + M1

√
t))

×
(
‖W∗0 − W∗e‖2

k + C2t

∫ t

0

‖f∗i (τ)‖2
k dτ + C2

∫ t

0

‖f∗ii(τ)‖2
k−1 dτ

)
, (4.9)

where C1 = C1(O1, Kε∗) depends on O1 and Kε∗ and C2 = C2(O1, M, Kε∗) depends

on O1, M and Kε∗ , and is an increasing function of M . From the classical estimates
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‖f(φ) − f(0)‖l ≤ C0‖f‖Cl(|·|≤‖φ‖L∞)(1 + ‖φ‖L∞)l−1‖φ‖l ,

where C0 is a universal constant, we also obtain upper bounds in the form

‖f∗i (t)‖2
l−1 + ‖f∗ii(t)‖2

l−1 ≤ C2M
2 ,

∫ t

0

‖f∗i (τ)‖2
l dτ ≤ C2(1 + t)M2 . (4.10)

From the governing equations, we also obtain

∫ τ̄

0

‖∂tW̃
∗(τ)‖2

l−1 dτ ≤ C2
3 (M̃2 + t(M2 + M̃2)) , (4.11)

where M̃ is defined for W̃∗ as M for W∗ and C3 depends on O1, M and Kε∗ , and

is an increasing function of M . We now define for any α ∈ (0, b]

Mα = 2C1(O1, Kε∗)α , M1α = 2C3(O1, Mb, Kε∗)2C1(O1, Kε∗)α .

Then τ̄ ≤ 3/2 let small enough such that

exp(C2(O1, Mb, Kε∗)(τ̄ + M1b

√
τ̄ )) ≤ 2 ,

C2
2 (O1, Mb, Kε∗)τ̄ (1 + τ̄ )(2C1(O1, Kε∗))2 ≤ 1 ,

C0M1b

√
τ̄ < d1 ,

where ‖φ‖L∞ ≤ C0‖φ‖l−1. Then, for any α ∈ (0, b], any W∗ ∈ Xτ̄ (O1, Mα, M1α)

any W∗0(x), such that W∗0 − We ∈ W l
2(R

d), W∗0 ∈ O0, and ‖W∗0 − W∗e‖l < α,

and any ε∗ ∈ Kε∗ , the solution W̃∗ to the linearized equations stays in the same

space Xτ̄ (O1, Mα, M1α). More specifically, we obtain from (4.9) and (4.10) that

M̃2 ≤ 2C2
1α2(1 + 4C2

1C2
2 t(1 + 2t)) ≤ 4C2

1α2 = M2
α

and from (4.11) we deduce that M̃2
1 ≤ C2

3 (2C1α)2(1 + 2t) ≤ M2
1α, and finally that

‖W̃∗ − W∗e‖L∞ ≤ C0M1α

√
τ̄ < d1.

In order to obtain fixed points, we establish that for τ̄ small enough, the map

W∗ → W̃∗ is a contraction in all the spaces Xτ̄ (O1, Mα, M1α), α ∈ (0, b], and we

establish simultaneously inequality (4.7). Let W∗ and Ŵ∗ be in Xτ̄ (O1, Mb, M1b),

let W∗0(x) and Ŵ∗0(x) such that W∗0 − We ∈ W l
2(R

d), Ŵ∗0 − We ∈ W l
2(R

d),

W∗0, Ŵ∗0 ∈ O0, ‖W∗0 −W∗e‖l < α, ‖Ŵ∗0 −W∗e‖l < α, let ε∗, ε̂∗ ∈ Kε∗ , and define

δW∗ = W∗−Ŵ∗ and δW̃∗ = W̃∗− ˜̂W∗. Forming the difference between the linearized

equations, we obtain that





A
∗i,i

0 (W∗, ε)∂tδW̃
∗
i +

∑

i∈C∗

A
∗i,i

i (W∗, ε∗)∂iδW̃
∗
i = δw∗ f∗i + δε∗ f∗i ,

A
∗ii,ii

0 (W∗, ε∗)∂tδW̃
∗
ii −

∑

i,j∈C∗

B
∗ii,ii

ij (W∗, ε∗)∂i∂jδW̃
∗
ii = δw∗ f∗ii + δε∗ f∗ii ,

(4.12)
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where

δw∗ f∗i = A
i,i

0 (Ŵ∗, ε∗)
(
A
i,i

0 (W∗, ε∗)
)−1

f∗i (W∗, ∂xW∗
ii, ε

∗) − f∗i (Ŵ∗, ∂xŴ∗
ii, ε

∗)

−
∑

i∈C∗

(
A
i,i

0 (Ŵ∗, ε∗)
(
A
i,i

0 (W∗, ε∗)
)−1

A
i,i

i (W∗, ε∗) − A
i,i

i (Ŵ∗, ε∗)
)
∂iW

∗
i ,

δw∗ f∗ii = A
i,i

0 (Ŵ∗, ε∗)
(
A
i,i

0 (W∗, ε∗)
)−1

f∗ii(W
∗, ∂xW∗, ε∗) − f∗ii(Ŵ

∗, ∂xŴ∗, ε∗)

+
∑

i,j∈C∗

(
A
i,i

0 (Ŵ∗, ε∗)
(
A
i,i

0 (W∗, ε∗)
)−1

B
ii,ii

ij (W∗, ε∗) − B
ii,ii

ij (Ŵ∗, ε∗)
)
∂i∂jW

∗
ii ,

δε∗ f∗i =
(
A
i,i

0 (Ŵ∗, ε̂∗) − A
i,i

0 (Ŵ∗, ε∗)
)(

A
i,i

0 (W∗, ε∗)
)−1

f∗i (W∗, ∂xW∗
ii, ε

∗)

−
∑

i∈C

(
A
i,i

0 (Ŵ∗, ε̂∗) − A
i,i

0 (Ŵ∗, ε∗)
)(

A
i,i

0 (W∗, ε∗)
)−1

A
i,i

i (Ŵ∗, ε∗)∂iW
∗
i

−
∑

i∈C

(
A
i,i

i (Ŵ∗, ε̂∗) − A
i,i

i (Ŵ∗, ε∗)
)
∂iW

∗
i + f∗i (Ŵ∗, ∂xŴ∗

ii, ε̂
∗)

− f∗i (Ŵ∗, ∂xŴ∗
ii, ε

∗)

and

δε∗ f∗ii =
(
A
ii,ii

0 (Ŵ∗, ε̂∗) − A
ii,ii

0 (Ŵ∗, ε∗)
)(

A
ii,ii

0 (W∗, ε∗)
)−1

f∗ii(W
∗, ∂xW∗, ε∗)

+
∑

i,j∈C

(
A
ii,ii

0 (Ŵ∗, ε̂∗)− A
ii,ii

0 (Ŵ∗, ε∗)
)(

A
ii,ii

0 (W∗, ε∗)
)−1

B
ii,ii

ij (Ŵ∗, ε∗)∂i∂jW
∗
ii

+
∑

i,j∈C

(
A
ii,ii

i (Ŵ∗, ε̂∗) − A
ii,ii

i (Ŵ∗, ε∗)
)
∂i∂jW

∗
ii + f∗ii(Ŵ

∗, ∂xŴ∗, ε̂∗)

− f∗ii(Ŵ
∗, ∂xŴ∗, ε∗) .

These expressions now imply that

‖δw∗f∗i ‖2
l−1 + ‖δw∗f∗ii‖2

l−2 ≤ C4(‖δW∗
i ‖2

l−1 + ‖δW∗
ii‖2

l ) ,

‖δε∗ f∗i ‖2
l−1 + ‖δε∗f∗ii‖2

l−2 ≤ C5δ
2
l−1(ε

∗, ε̂∗) ,

so that

sup
0≤τ≤τ̄

‖δW̃∗(τ)‖2
l−1 +

∫ τ̄

0

‖δW̃∗
ii(τ)‖2

l dτ ≤ C6(‖W∗0 − Ŵ∗0‖2
l−1 + δ2

l−1(ε
∗, ε̂∗))

+ C7t(1 + t)

(
sup

0≤τ≤τ̄
‖δW∗(τ)‖2

l−1 +

∫ τ̄

0

‖δW∗
ii(τ)‖2

l dτ

)
, (4.13)
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where all constants C4, C5, C6, C7, depend on O1, b and Kε∗ . Now if τ̄ is small

enough so that C7τ̄ (1+τ̄) < 1/2, by letting W∗0 = Ŵ∗0 and ε∗ = ε̂∗, we obtain, that

the map W∗ → W̃∗ is a contraction in all the spaces Xτ̄ (O1, Mα, M1α), α ∈ (0, b].

Introducing the iterates W∗n starting at the initial condition W∗0 and such that

W∗(n+1) = W̃∗n, that is, W∗(n+1) is obtained as the solution of linearized equations,

then the sequence {W∗n}n≥0 is easily shown to be convergent to a local solution

of the nonlinear equations satisfying the estimates (4.6) at order l − 1. Inequality

(4.7) is then obtained by letting δW̃∗ = δW∗ in (4.13). Finally, the estimates (4.6)

at order l are recovered since for any α ∈ (0, b], the space Xτ̄ (O1, Mα, M1α) is

invariant, and the proof is complete.

5. Global Existence and Asymptotic Stability for an

Abstract System

In this section we investigate asymptotic stability of equilibrium states for an ab-

stract system of conservation law in normal form and the continuous dependence

of solutions with respect to a parameter. We consider a system of conservation

laws satisfying (Edp1)–(Edp4) and assume for convenience either that the domain

O(W∗,ε∗) contains a subset in the form OW∗ ×Kε∗ , where OW∗ is an open set of Rn∗

independent of ε∗ and Kε∗ a compact set of Rm∗

independent of W∗, or that there

is a smooth extension of the system coefficients to such a domain.

5.1. Local dissipativity

If we linearize system (4.4) around the constant stationary state W∗e, we obtain a

linear system in the variable w∗ = W∗ − W∗e

A
∗

0(W
∗e, ε∗)∂tw

∗ +
∑

i∈C

A
∗

i (W
∗e, ε∗)∂iw

∗ =
∑

i,j∈C∗

B
∗

ij(W
∗e, ε∗)∂i∂jw

∗ − L
∗
(W∗e, ε∗)w∗ ,

where L
∗

is defined by L
∗

= −∂W∗Ω
∗
. By Fourier transform, the spectral problem

associated with this linear system reads

λA
∗

0(W
∗e, ε∗)φ + (ζA

∗
(W∗e, w, ε∗) − ζ2B

∗
(W∗e, w, ε∗) + L

∗
(W∗e, ε∗))φ = 0 , (5.1)

where ζ ∈ i R, i2 = −1, w ∈ Σd−1, ε∗ ∈ Kε∗ , A
∗
(W∗e, w, ε∗) =

∑
i∈C∗ A

∗

i (W
∗e, ε∗)wi,

and B
∗
(W∗e, w, ε∗) =

∑
i,j∈C∗ Bij(W

∗e, ε∗)wiwj . We will denote by Λ(ζ, w, ε∗) the

complex numbers λ such that there exists φ ∈ Cn∗

, φ 6= 0, satisfying (5.1).

The results of Shizuta and Kawashima18 can directly be generalized to para-

meter dependent situations. The smoothness of compensating matrices is indeed a

consequence of their explicit representation using matrix operational calculus.18

Theorem 5.1. The following properties are equivalent

(Spe1) There exists a compensating matrix K defined and C∞ over Σd−1×Kε∗ . For

any w ∈ Σd−1 and any ε∗ ∈ Kε∗ , the matrix K(w, ε∗) is real, the product
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K(w, ε∗)A
∗

0(W
∗e, ε∗) is skew-symmetric, K(−w, ε∗) = −K(w, ε∗), and the

matrix

K(w, ε∗)A
∗
(W∗e, w, ε∗) + B

∗
(W∗e, w, ε∗) + L

∗
(W∗e, ε∗) ,

is positive definite.

(Spe2) Let ζ ∈ i R, ζ 6= 0, w ∈ Σd−1, and ε∗ ∈ Kε∗ . Then all eigenvalues λ of

Λ(ζ, w, ε∗) have a negative real part.

(Spe3) Let Ψ ∈ Rn∗\{0} such that B
∗
(W∗e, w, ε∗)Ψ = L

∗
(W∗e, ε∗)Ψ = 0 for some

w ∈ Σd−1, ε∗ ∈ Kε∗ . Then we have ζA
∗

0(W
∗e, ε∗)Ψ + A

∗
(W∗e, w, ε∗)Ψ 6= 0 for

any ζ ∈ R.

(Spe4) There exists δ > 0 such that for any ζ ∈ i R, w ∈ Σd−1, ε∗ ∈ Kε∗ , and any

eigenvalue λ of Λ(ζ, w, ε∗), we have

<(λ) ≤ −δ
|ζ|2

1 + |ζ|2 .

Remark 5.1. It is not known if the matrix K(w, ε∗) is of the form
∑

j∈C Kj(ε∗)wj .

Nevertheless, in practical applications, it is generally possible to obtain compensat-

ing matrices in this form.

5.2. Global existence and asymptotic stability

We now investigate the existence of solutions globally in time around equilibrium

states. We assume that the system is stricly dissipative in the sense of (5.1) and

the source term is dissipative in the following sense.11

(Dis1) For any ε∗ ∈ Kε∗ , the matrix A
∗

0(W
∗e, ε∗) is symmetric positive definite, the

matrices A
∗

i (W
∗e, ε∗), i ∈ C, are symmetric, we have the reciprocity relations

B
∗

ij(W
∗e, ε∗)t = B

∗

ji(W
∗e, ε∗), i, j ∈ C, and the matrix L

∗
(W∗e, ε∗) is symmetric

positive semidefinite.

(Dis2) The linearized system is strictly dissipative in the sense of Theorem 5.1.

(Dis3) The smallest linear subspace containing the source term vector Ω̃∗(V∗, ε∗),

for all (V∗, ε∗) ∈ O(V∗,ε∗), is included in the range of L̃∗(V∗e, ε∗), with L̃∗ =

(∂V∗W∗)tL
∗
(V∗e, ε∗)∂V∗W∗.

(Dis4) For any ε∗ ∈ Kε∗ , there exists a neighborhood of (V∗e, ε∗), in O(V∗,ε∗), and

a positive constant δ > 0 such that, for any (V∗e, ε∗) in this neighborhood,

we have

δ|Ω̃∗(V∗, ε∗)|2 ≤ −〈V∗ − V∗e, Ω̃∗(V∗, ε∗)〉 .

Theorem 5.2. Let d ≥ 1 and l ≥ [d/2]+2 be integers and consider the system (4.4).

Then there exists b > 0 small enough such that if W∗0 satisfies ‖W∗0 − W∗e‖l < b,

there exists a unique global solution W∗ for any ε∗ ∈ Kε∗ to the Cauchy problem

A
∗

0∂tW
∗ +

∑

i∈C∗

A
∗

i ∂iW
∗ =

∑

i,j∈C∗

∂i(B
∗

ij∂jW
∗) + T ∗

+ Ω
∗
,
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with initial condition

W∗(0, x) = W∗0(x)

and

W∗
i − W∗e

i ∈ C0([0,∞), W l
2(R

d)) ∩ C1([0,∞), W l−1
2 (Rd)) ∩ L2((0,∞), W l

2(R
d)) ,

W∗
ii − W∗e

ii ∈ C0([0,∞), W l
2(R

d)) ∩ C1([0,∞), W l−2
2 (Rd)) ∩ L2((0,∞), W l+1

2 (Rd)) .

Furthermore, W∗ satisfies the estimate

‖W∗(t) − W∗e‖2
l +

∫ t

0

(‖∂xW∗
i (τ)‖2

l−1 + ‖∂xW∗
ii(τ)‖2

l ) dτ ≤ C‖W∗0 − W∗e‖2
l ,

uniformly in ε∗ where C is a positive constant and supx∈R3 |W∗(t)−We| goes to zero

as t → ∞ uniformly in ε∗. Finally, emphasizing the dependence on ε∗ by denoting

W∗(t, x, ε∗) the solution obtained for ε∗ ∈ Kε∗ we have for any α∗ ∈ Kε∗

lim
ε∗→α∗

ε∗∈Kε∗

sup
t≥0

‖W∗(t, ·, ε∗) − W∗(t, ·, α∗)‖Cl−([d/2]+2) = 0 .

The main idea is that all usual estimates can be made uniform with respect to

the parameter ε∗ since we are considering a compact set Kε∗ . Thanks to the local

existence theorem and to uniform estimates, global solutions are obtained for all

ε∗ ∈ Kε∗ . Continuity with respect to the parameter ε∗ is then a consequence of the

continuity over finite time interval and of uniform asymptotic stability. We define

for convenience Nl(t) = Nl(0, t) where

Nl(t1, t2)
2 = sup

t1≤τ≤t2

‖W ∗(τ) − W∗e‖2
l +

∫ t2

t1

(‖∂xW∗
i (t)‖2

l−1 + ‖∂xW∗
ii(t)‖2

l ) dt .

Lemma 5.1. Let σ̄∗ denotes the modified entropy

σ̄∗(W∗, ε∗) = σ∗(W∗, ε∗) − σ∗(W∗e, ε∗) − (∂U∗σ∗(W∗e, ε∗))(W∗ − W∗e) .

There exists a neighborhood B of W∗e and constants c and c̄ such that

∀W∗ ∈ B ∀ ε∗ ∈ Kε∗ , c|W∗ − W∗e|2 ≤ σ̄∗(W∗, ε∗) ≤ c̄|W∗ − W∗e|2 .

Lemma 5.2. Let d ≥ 2, l ≥ [d/2]+1 and B a bounded neighborhood of W∗e. There

exists a constant β0(B) independent of ε∗ such that

∀ ε∗ ∈ Kε∗ , Nl(τ) ≤ β0(B) ⇒ W∗ ∈ B , (t, x) ∈ [0, τ ] × R
d .

Proposition 5.1. Let d ≥ 2, l ≥ [d/2] + 2 and assume that W∗0(x) is such that

W∗0 − W∗e ∈ W l
2(R

d). Assume that W∗ is a solution over [0, τ ] such that

W∗
i − W∗e

i ∈ C0([0, τ ], W l
2(R

d)) ∩ C1([0, τ ], W l−1
2 (Rd)) ,

W∗
ii − W∗e

ii ∈ C0([0, τ ], W l
2(R

d)) ∩ C1([0, τ ], W l−2
2 (Rd)) ∩ L2((0, τ), W l+1

2 (Rd)) ,

and that Nl(τ) ≤ β0(B). There exists constants b′ ≤ β0(B) and C ′ > 1 independent

of ε∗ such that

Nl(τ) ≤ b′ ⇒ Nl(τ) ≤ C ′‖W∗0 − W∗e‖l .
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Proof. The proofs of Lemmas 5.1, 5.2 and Proposition 5.1 are similar to the situ-

ation without parameter,11,13 thanks to the compacity of the set Kε∗ .

We now apply the local existence Theorem 4.6 with O0 = B, any d1 > 0 such

that 0 < d1 < d(O0, ∂OW∗), and b0 = β0(B). There exists a local solution defined

over [0, τ̄ ] for any ε∗ ∈ Kε∗ , whenever ‖W∗0 − W∗e‖l < b0, and from Theorem 4.6

we also have estimates in the form

Nl(τ̄ ) ≤ C‖W∗0 − W∗e‖l ,

where C > 1 depends on O1, b0 = β0(B) and Kε∗ . Let then

b̄ = inf

(
b′

C
,

b′

C ′(1 + C2)1/2

)
,

where b′ and C ′ are given by Proposition 5.1 and assume that ‖W∗0 − W∗e‖l ≤ b̄.

For any ε∗ ∈ Kε∗ , we first have a solution defined on [0, τ̄ ] such that

Nl(τ̄ ) ≤ C‖W∗0 − W∗e‖l ≤ Cb̄ ≤ b′ ≤ b0 = β0(B) .

Since Nl(τ̄ ) ≤ b′, we also have Nl(τ̄ ) ≤ C ′‖W∗0 − W∗e‖l ≤ C ′b̄. We can now start

again from W∗(τ̄ ) at τ̄ since ‖W∗(τ̄ ) −W∗e‖l ≤ Nl(τ̄ ) ≤ b0 and we have a solution

defined on [τ̄ , 2τ̄ ] with Nl(τ̄ , 2τ̄) ≤ CNl(τ̄ ). As a consequence, we obtain that

Nl(2τ̄ ) ≤ (1 + C2)1/2Nl(τ̄ ) ≤ (1 + C2)1/2C ′b̄ ≤ b′ ≤ b0 ,

so that from Proposition 5.1 with τ = 2τ̄ we obtain

Nl(2τ̄ ) ≤ C ′b̄ ≤ b′ ≤ b0 .

We can start again from W∗(2τ̄ ) at 2τ̄ and an easy induction shows that the solution

is defined for all time and that for any t ≥ 0 we have Nl(t) ≤ C ′‖W∗0 − W∗e‖l

uniformly for ε∗ ∈ Kε∗ .

We emphaze now the dependence on ε∗ by denoting W∗(t, x, ε∗) the solution

obtained for ε∗ ∈ Kε∗ . We introduce Φ(t, ε∗) = ‖∂xW∗(t, ·, ε∗)‖2
l−2 and it is easily

established that for any ε∗ ∈ Kε∗

∫ ∞

0

|Φ(t, ε∗)| dt +

∫ ∞

0

|∂tΦ(t, ε∗)| dt ≤ C‖W∗0 − W∗e‖2
l ,

where C is independent ε∗ so that limt→∞ ‖∂xW∗(t, ·, ε∗)‖l−2 = 0 uniformly in

ε∗ ∈ Kε∗ . Let then α∗ ∈ Kε∗ and let a > 0 be given. From these estimates, we

can find a time τa such that ‖∂xW∗(t, ·, ε∗)‖l−2 ≤ a/2 for t ≥ τa and ε∗ ∈ Kε∗ .

This implies that ‖∂x(W∗(t, ·, ε∗) − W∗(t, ·, α∗))‖l−2 ≤ a for any t ≥ τa and any

ε∗, α∗ ∈ Kε∗ . On the other hand, we have (Ia − 1)τ̄ < τa ≤ Iaτ̄ for Ia large

enough and we can divide the time interval [0, Iaτ̄ ] into the union of intervals

in the form [iτ̄ , (i + 1)τ̄ ], for i = 0, Ia − 1. We can now apply the estimates (4.7) to

deduce that

sup
0≤τ≤Iaτ̄

‖W∗(τ, ·, ε∗) − W∗(τ, ·, α∗)‖l−1 ≤ (1 + C)Iaδl−1(ε
∗, α∗) = 0 ,
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so that as ε∗ → α∗ in Kε∗ , W∗(t, ·, ε∗) converges uniformly in t ∈ [0, Iaτ̄ ] to

W∗(t, ·, α∗) in the W l−1
2 norm. We have thus established that

lim
ε∗→α∗

ε∗∈Kε∗

sup
t≥0

‖∂x(W∗(t, ·, ε∗) − W∗(t, ·, α∗))‖l−2 = 0 ,

and using the interpolation inequality ‖φ‖Cl−([d/2]+2) ≤ C0‖∂l−1
x φ‖a

0 ‖φ‖1−a
0 , we

conclude that limε∗→α∗ supt≥0 ‖W∗(t, ·, ε∗) − W∗(t, ·, α∗)‖Cl−([d/2]+2) = 0.

5.3. Decay estimates

Uniform decay estimates can be obtained, thanks to the compacity of Kε∗ . These

estimates can then be used to improve the the continuous dependence on the

parameter by using the space W l−1
2 instead of C l−([d/2]+2).

Theorem 5.3. Let d ≥ 2, l ≥ [d/2] + 3 and W∗0(x) be given, such that

W∗0 − W∗e ∈ W l
2(R

d) ∩ Lp(Rd) ,

with p ∈ [1, 2). Then, if ‖W∗0 − W∗e‖l and ‖W∗0 − W∗e‖Lp are small enough, the

unique global solution to the Cauchy problem satisfies the decay estimate

‖W∗(t) − W∗e‖l−2 ≤ C(1 + t)−γ(‖W∗0 − W∗e‖l−2 + ‖W∗0 − W∗e‖Lp) , 0 ≤ t ,

uniformly in ε∗ ∈ Kε∗ , where C is a positive constant and γ = d(1/2p − 1/4).

Finally, for any α∗ ∈ Kε∗ we have

lim
ε∗→α∗

ε∗∈Kε∗

sup
t≥0

‖W∗(t, ·, ε∗) − W∗(t, ·, α∗)‖l−1 = 0 .

Proof. The proof of decay estimates is similar to the case without parameter,11,13

thanks to the compacity of the set Kε∗ . These estimates combined with those of

Theorem 5.2, implies that

lim
t→∞

‖W∗(t, ·, ε∗) − W∗e‖l−1 = 0 ,

uniformly for ε∗ ∈ Kε∗ , and we can proceed as in the proof of Theorem 5.2.

Remark 5.2. Decay estimates can also be obtained uniformly for d = 1 provided

that estimates13 about the exponential of (A
∗

0)
−1/2(ζA

∗ − ζ2B
∗

+ L
∗
)(A

∗

0)
−1/2 at

(W∗e, ε∗) can be obtained around ζ = 0 uniformly in ε∗.
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6. Symmetrization for Ambipolar Plasmas

We investigate in this section symmetric forms for the system of partial differential

equations modeling ambipolar plasmas (3.5).

6.1. Entropy and symmetric conservative form

We define the mathematical entropy σ by

σ = −
∑

k∈S

γkSk

R
, (6.1)

where the 1/R factor is introduced for convenience, and the corresponding entropic

variables V reads

V = (∂Uσ)t =
1

RT

(
G1 −

1

2
m1v · v, . . . , Gns − 1

2
mnsv · v, v1, v2, v3,−1

)
t

. (6.2)

Theorem 6.1. The function σ is a mathematical entropy for the system (3.5). The

map (U, ε) → (V, ε) is a C∞ diffeomorphism from O(U,ε) onto O(V,ε) = OV × Oε

where OV = Rns+3 × (−∞, 0) is independent of ε and Oε = (0, ε̄) is independent

of V. In addition, this diffeomorphism admits a smooth extension up to ε = 0 and

ε = ε̄. The system written in terms of the entropic variable V

Ã0∂tV +
∑

i∈C

Ãi∂iV =
∑

i,j∈C

∂i(B̃ij∂jV) + Ω̃ ,

with

Ã0 = ∂VU , Ãi = Ai∂VU , B̃ij = Bij∂VU and Ω̃ = Ω

is of the symmetric form, i.e. the matrices Ã0, Ãi, i ∈ C and B̃ij , i, j ∈ C, verify

properties (S1)–(S4). The matrix Ã0 is given by

Ã0 =




(γkδkl)k,l∈S Sym

(γlmlvi)i∈C,l∈S (ρRTδij + Σm2vivj)i∈C,j∈C

(γlE
tot
l )l∈S (ρRTvj + Σmevj)j∈C Υe


 ,

where

Σm2 =
∑

k∈S

γkm2
k , Σme =

∑

k∈S

γkmkEtot
k ,

Υe =
∑

k∈S

γk(Etot
k )2 + RT (ρv · v + CvT ) .

Since this matrix is symmetric, we only give its left lower triangular part and write

“Sym” in the upper triangular part. Denoting by ξ = (ξ1, ξ2, ξ3)
t an arbitrary vector
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of R3, the matrices Ãi, i ∈ C, are given by

∑

i∈C

ξiÃi =




(γkδklv · ξ)k,l∈S Sym

(γlmlviv · ξ + γlRTξi)i∈C,l∈S Σγ,v

(γlH
tot
l v · ξ)l∈S Σh,v Υhv · ξ


 ,

with

Σmh =
∑

k∈S

γkmkHtot
k Υh =

∑

k∈S

γk(Htot
k )2 + RT (ρv · v + CpT ) .

Σγ,v = Σm2v ⊗ v v · ξ + ρRT (v · ξ I3,3 + v ⊗ ξ + ξ ⊗ v)

Σh,v = (Σmh + ρRT )v · ξ vt + RTHtotξt .

Moreover, we have the decomposition

B̃ij = δijRT B̃D + κRT B̃κ
ij + ηRT B̃

η
ij ,

with

B̃D =
1

p




(D̂klγkγl)k,l∈S Sym

03,ns 03,3
(∑

k∈S

γlD̂kl(pχk + γkHk)

)

l∈S

01,3 ΥD




,

where

ΥD = λpT +
∑

k,l∈S

D̂kl(pχk + γkHk)(pχl + γlHl) ,

and denoting by ξ = (ξ1, ξ2, ξ3)
t and ζ = (ζ1, ζ2, ζ3)

t arbitrary vectors of R
3, the

matrices B̃κ
ij and B̃

η
ij , i, j ∈ C, are given by

∑

i,j∈C

ξiζj B̃
κ
ij =




0ns,ns 0ns,3 0ns,1

03,ns ξ ⊗ ζ v · ξ ζ

01,ns v · ξ ζt v · ξ v · ζ


 ,

and

∑

i,j∈C

ξiζj B̃
η
ij =




0ns,ns 0ns,3 0ns,1

03,ns ξ · ζI3,3 + ζ ⊗ ξ − 2

3
ξ ⊗ ζ ξ · ζ v + v · ζ ξ − 2

3
v · ξ ζ

01,ns ξ · ζ vt + v · ζ ξt − 2

3
v · ξ ζt ξ · ζ v · v +

1

3
v · ξ v · ζ




.
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Proof. The matrices Ã0, Ãi, i ∈ C, and B̃ij , i, j ∈ C, are easily evaluated by

using the natural variable Z. These matrices are symmetric, and we note that Ã0

is positive definite since for any vector x of Rns+4

〈Ã0x, x〉 = RCvT 2x2
ns+4 + ρRT

∑

µ∈C

(xns+µ + vµxns+4)
2

+
∑

k∈S

γk

(
xk + mk

∑

µ∈C

vµxns+µ + Etot
k xns+4

)2

.

Similarly B̃ is positive semidefinite since we have

〈B̃x, x〉
RT

=
1

p

∑

k,l∈S

D̂kl(γkxk + (γkHk + pχk)xns+4)(γlxl + (γlHl + pχl)xns+4)

+ λTx2
ns+4 + η

∑

ν∈C

(xns+ν + vνxns+4)
2

+

(
κ +

1

3
η

)(∑

ν∈C

ξν(xns+ν + vνxns+4)

)2

.

From the equivalence Theorem 4.3 we deduce that σ is a mathematical entropy.

6.2. Normal variable

In this section we investigate normal forms for system (3.5). We first establish the

null space invariance property.

Lemma 6.1. The null space of the matrix

B̃(V, ε, ξ) =
∑

i,j∈C

B̃ij(V)ξiξj

is independent of V ∈ OV and ξ ∈ Σ2, where Σ2 is the unit sphere in three

dimensions. For any ε ∈ [0, ε̄] this null space is given by

N(B̃) = Rm̂ ⊕ Rκ̂ ,

where m̂ = (m, 0, 0, 0, 0)t, κ̂ = (κ, 0, 0, 0, 0)t, and we have B̃ij(V)N(B̃) = 0, i, j ∈ C,

for V ∈ OV, ε ∈ [0,∞).

Proof. The expression of 〈B̃x, x〉 in the proof of Theorem 6.1 yields that

〈B̃x, x〉 = 0 if and only if xns+1 = 0, xns+2 = 0, xns+3 = 0, xns+4 = 0, and

(xk)k∈S ∈ N(D̂). By using Lemma 2.1, we deduce that N(B̃) is spanned by

m̂ = (m1, . . . , mns , 0, 0, 0, 0)t and κ̂ = (κ1, . . . , κns , 0, 0, 0, 0)t. It is then easily

checked that B̃ij(V)N(B̃) = 0, i, j ∈ C, for V ∈ OV and ε ∈ [0,∞).
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Making use of the explicit basis of N(B̃) we define the matrix P from

P =




m1 κ1 0 . . . . . . 0 0 0 0 0

m2 κ2 0 . . . . . . 0 0 0 0 0

m3 κ3 1 0 . . . 0 0 0 0 0

...
... 0

. . .
. . .

...
...

...
...

...

...
...

...
. . .

. . . 0
...

...
...

...

mns κns 0 . . . 0 1 0 0 0 0

0 0 0 . . . . . . 0 1 0 0 0

0 0 0 . . . . . . 0 0 1 0 0

0 0 0 . . . . . . 0 0 0 1 0

0 0 0 . . . . . . 0 0 0 0 1




. (6.3)

From Lemma 6.1 and from assumptions (Th1)–(Th5), assuming for instance that

the first species is neutral and the second has a positive charge, it is easily checked

that the matrix P is always nonsingular, that the first two columns are spanning

N(B̃), and that P is a smooth function of ε ∈ [0, ε̄].

We may then introduce the auxiliary variable U′ = PtU and the corresponding

entropic variable V′ = P−1V given by

U′ =

(
ρ, q, γ3, . . . , γns , ρv1, ρv2, ρv3, E +

1

2
ρv · v

)
t

and

V′ =
1

RT

(
κ2G1 − κ1G2

κ2m1 − κ1m2
− 1

2
v · v,

m2G1 + m1G2

κ2m1 − κ1m2
, V′

3, . . . , V
′
ns , v1, v2, v3,−1

)
t

,

where

V′
k = Gk − rkG1 − skG2 , 3 ≤ k ≤ ns ,

and

rk =
κ2mk − κkm2

κ2m1 − κ1m2
, sk =

κkm1 − κ1mk

κ2m1 − κ1m2
, 3 ≤ k ≤ ns .

From Theorem 4.5, normal variables are in the form W = (φi(U
′
i, ε), φii(V

′
ii, ε))

t,

where U′
i is the first two components of U′ and V′

ii the last ns + 2 components of

V′. For convenience, we choose the variable W given by

W = (ρ, q, log(γ3/γr3
1 γs3

2 ), . . . , log(γns/γrns

1 γsns

2 ), v1, v2, v3, T )t . (6.4)

Theorem 6.2. The map (V, ε) → (W, ε) is a C∞ diffeomorphism from O(V,ε) onto

O(W,ε) = Oρ,q × Rns+1 × (0,∞), where

Oρ,q =

{
(u1, u2) ∈ R

2 : u1 > 0, min
k∈S

κk

mk
u1 < u2 < max

k∈S

κk

mk
u1

}
.
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This diffeomorphism admits a smooth extension up to ε = 0 and ε = ε̄. The system

written in the W variable

A0∂tW +
∑

i∈C

Ai∂iW =
∑

i,j∈C

∂i(Bij∂jW) + T + Ω , (6.5)

where A0 = ∂WVtÃ0∂WV, Ai = ∂WVtÃi∂WV, i ∈ C, Bij = ∂WVtB̃ij∂WV, i, j ∈ C,

T = −∑i,j∈C ∂i(∂WVt)B̃ij∂WV∂jW, and Ω = ∂WVtΩ, is in the normal form. The

matrix A0 is given by

A0 =


 A

i,i

0 Sym

0ns+2,2 A
ii,ii

0


 ,

with

A
i,i

0 =
1

Σκ2Σm2 − Σ2
mκ

[
Σκ2 −Σmκ

−Σmκ Σm2

]
, A

ii,ii

0 =




Aii,ii
Sym

03,ns−2
ρ

RT
I3,3

01,ns−2 01,3
Cv

RT 2




,

Σm2 =
∑

k∈S

γkm2
k , Σmκ =

∑

k∈S

γkmkκk , Σκ2 =
∑

k∈S

γkκ
2
k ,

and Aii,ii
is the square matrix of dimension ns − 2 whose coefficients are

Aii,ii
k,l = γkδkl−γkγl

mkmlΣκ2 − (mkκl + mlκk)Σmκ + κkκlΣm2

Σκ2Σm2 − Σ2
mκ

, 3 ≤ k, l ≤ ns .

Denoting by ξ = (ξ1, ξ2, ξ3)
t an arbitrary vector of R3, the matrices Ai, i ∈ C, are

given by

∑

i∈C

ξiAi = A0v · ξ +




0ns,ns Sym

A
α

03,3

01,ns

p

RT 2
ξt 0


 ,

where A
α

has its columns given by

A
α

1• =
ρΣκ2 − qΣmκ

Σκ2Σm2 − Σ2
mκ

ξ , A
α

2• =
qΣm2 − ρΣmκ

Σκ2Σm2 − Σ2
mκ

ξ ,

A
α

l• = γl

(
1 − ρmlΣκ2 − (ρκl + mlq)Σmκ + qκlΣm2

Σκ2Σm2 − Σ2
mκ

)
ξ , 3 ≤ l ≤ ns .

The matrices Bij have the structure Bij = δijB
D

+ B
κ

ij + B
η

ij and denoting by

ξ = (ξ1, ξ2, ξ3)
t and ζ = (ζ1, ζ2, ζ3)

t arbitrary vectors of R3, the matrices B
κ

ij , B
η

ij ,
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i, j ∈ C, are given by

∑

i,j∈C

ξiζj(B
κ

ij + B
η

ij) =
p

R




0ns,ns 0ns,3 0ns,1

03,ns ηξ · ζ I3,3 + ηζ ⊗ ξ +

(
κ − 2

3
η

)
ξ ⊗ ζ 03,1

01,ns 01,3 01,1


 ,

and the matrix B
D

is given by

B
D

=
1

pT




02,2 Sym

0ns−2,2 RT 2(D̂klγkγl)3≤k,l≤ns

03,2 03,ns−2 03,3

01,2

(∑

k∈S

γlD̂kl(γkRT + χkp)

)

3≤l≤ns

01,3 ΥD




,

ΥD =
1

RT 2

(
λpT +

∑

k,l∈S

D̂kl(pχk + RTγk)(pχl + RTγl)

)
,

and finally

Ω =

(
0, 0, ω3, . . . , ωns , 0, 0, 0,− 1

T 2

∑

k∈S

Ekωk

)
t

.

Proof. These are consequences of lengthy calculations and of Theorem 4.5.

7. Asymptotic Stability for Ambipolar Plasmas

In this section, we investigate the asymptotic stability of equilibrium states for the

system (6.5) modeling ambipolar plasmas as well as the limit of vanishing electron

mass.

7.1. Main result

We consider the system (6.5) written in the W = (Wt

i , W
t

ii)
t variable, with the

hyperbolic variable

Wi = (ρ, q)t ,

and parabolic variable

Wii = (log(γ3/γr3
1 γs3

2 ), . . . , log(γns/γrns

1 γsns

2 ), v1, v2, v3, T )t .

The following result is a direct consequence of the axiomatic structure of

thermochemistry.8,11
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Proposition 7.1. Let a temperature T e > 0, a velocity ve ∈ R3, a mole density

vector γf > 0 be given, and assume that properties (Th1)–(Th5) hold. Then there

exists a unique constant equilibrium state Ue such that

Ω(Ue) = 0 , (7.1)

in the form Ue = (γe
1 , . . . , γ

e
ns , ρeve

1, ρ
eve

2, ρ
eve

3, ρ
ee(T e) + 1

2ρeve · ve)t and such that

γe ∈ (γf + R) ∩ (0, +∞)ns

.

Note that this equilibrium state is independent of the reduced electron mass ε.

In addition, whenever γf is such that qf = 〈γf , κ〉 = 0, we obtain qe = 〈γe, κ〉 = 0,

since κ ∈ R⊥ and γe ∈ γf +R. The equilibrium state corresponding to the various

variables are also denoted with the superscript “e”, so that the equilibrium states

in the variables V and W, for instance, are denoted by Ve and We, respectively.

Theorem 7.1. Let d ≥ 1 and l ≥ [d/2] + 2 be integers and consider the system

(6.5). There exists b > 0 small enough such that if ‖W0 − We‖l < b, there exists a

unique global solution W for any ε ∈ [0, ε̄] to the Cauchy problem

A0∂tW +
∑

i∈C

Ai∂iW =
∑

i,j∈C

∂i(Bij∂jW) + T + Ω ,

with initial condition

W(0, x) = W0(x) ,

such that

Wi − We
i ∈ C0([0,∞), W l

2(R
d)) ∩ C1([0,∞), W l−1

2 (Rd)) ∩ L2((0,∞), W l
2(R

d)) ,

Wii − We
ii ∈ C0([0,∞), W l

2(R
d)) ∩ C1([0,∞), W l−2

2 (Rd)) ∩ L2((0,∞), W l+1
2 (Rd)) .

Furthermore, W satisfies the estimate

‖W(t) − We‖2
l +

∫ t

0

(‖∂xρ(τ)‖2
l−1 + ‖∂xq(τ)‖2

l−1 + ‖∂xv(τ)‖2
l + ‖∂xT (τ)‖2

l ) dτ

+
∑

3≤k≤ns

∫ t

0

‖∂x log(γk/γrk
1 γsk

2 )(τ)‖2
l dτ ≤ C‖W0 − We‖2

l ,

where C is a positive constant and supx∈R3 |W(t) − We| goes to zero as t → ∞.

Finally, emphasizing the dependence on ε by denoting W(t, x, ε) the solution ob-

tained for ε ∈ [0, ε̄], we have for any α ∈ [0, ε̄]

lim
ε→α

sup
t≥0

‖W(t, ·, ε) − W(t, ·, α)‖Cl−([d/2]+2) = 0 .

Physically relevant solutions correspond to initial conditions such that q0 = 0

and equilibrium states such that qe = 0, since in this situation we easily recover

that q(t, x) = 0 for any t ≥ 0 and x ∈ Rd.
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Theorem 7.2. Let d ≥ 2, l ≥ [d/2] + 3 and W0(x) be given, such that

W0 − We ∈ W l
2(R

d) ∩ Lp(Rd) ,

with p ∈ [1, 2). Then, if ‖W0−We‖l and ‖W0−We‖Lp are small enough, the unique

global solution to the Cauchy problem satisfies the decay estimate

‖W(t) − We‖l−2 ≤ C(1 + t)−γ(‖W0 − We‖l−2 + ‖W0 − We‖Lp) , t ∈ [0, +∞) ,

uniformly in ε ∈ [0, ε̄] where C is a positive constant and γ = d(1/2p−1/4). Finally,

for any α ∈ [0, ε̄] we have

lim
ε→α

sup
t≥0

‖W(t, ·, ε) − W(t, ·, α)‖l−1 = 0 .

7.2. Proof

The system of partial differential equations modeling ambipolar plasmas has been

written into a normal form in Theorem 6.2. The coefficients of this normal form are

smooth functions of W and of the parameter ε ∈ [0, ε̄]. Moreover, the equilibrium

state is independent of ε. As a consequence, we only have to establish that properties

(Dis1)–(Dis4) are satisfied.

The linearized system around the constant state We reads

A0(W
e, ε)∂tw +

∑

i∈C

Ai(W
e, ε)∂iw =

∑

i,j∈C

Bij(W
e, ε)∂i∂jw − L(We, ε)w ,

where L = −∂WΩ and w = W − We. Property (Dis1) is a direct consequence of the

following expression of L(We, ε) at an equilibrium point

L(We, ε) =
∑

r∈R

K̂
s
rν̄r ⊗ ν̄r ,

where ν̄r = (0, 0, νr3, . . . , νrns , 0, 0, 0,−
∑

l∈S
νrlEl/RT 2) and K̂

s
r = K

s
r exp〈νf

r, µ〉,
obtained directly from Ω or from the expression of L̃(We, ε) given in Giovangigli

and Massot.8,11 Properties (Dis3) and (Dis4) are also established in Giovangigli and

Massot.8,11 In order to examine if (Dis2) holds, the most convenient way is to use

property (Spe3) of Theorem 5.1.

Proposition 7.2. For any equilibrium state We we have

N(B(We, ξ, ε)) = Re1 ⊕ Re2 ⊂ N(L(We, ε)) ,

and if the equilibrium point We is such that qe = 0, there exist nonzero vectors Ψ

of Re1 ⊕ Re2 such that ζA0(W
e, ε)Ψ + A(We, ξ, ε)Ψ = 0 where ζ is real.

Proof. From the normal form established in Theorem 6.2, introducing the coordi-

nates (µ′
1, µ

′
2, µ

′
3, . . . , µ

′
ns) of the vector (γkHk + pχk)k∈S with respect to the basis
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(m, κ, e3, . . . , ens

), we have

〈Bx, x〉
RT

=
1

p

∑

k,l≥3

D̂kl(γkxk + µ′
kxns+4)(γlxl + µ′

lxns+4) + λTx2
ns+4

+ η
∑

ν∈C

(xns+ν + vνxns+4)
2 +

(
κ +

1

3
η

)(∑

ν∈C

ξν(xns+ν + vνxns+4)

)2

,

and this yields N(B(We, ξ, ε)) = Re1 ⊕ Re2. From the expression of L(We, ε) it is

easily checked that Re1 ⊕ Re2 ⊂ N(L(We, ε)). A direct calculation yields

(ζA0 + A)(α1e
1 + α2e

2)

=

(
(ζ + v · ξ)

α1Σκ2 − α2Σmκ

Σκ2Σm2 − Σ2
mκ

, (ζ + v · ξ)
α2Σm2 − α1Σmκ

Σκ2Σm2 − Σ2
mκ

,

0, . . . , 0,
ρ(α1Σκ2 − α2Σmκ) + q(α2Σm2 − α1Σmκ)

Σκ2Σm2 − Σ2
mκ

ξt, 0

)
,

and selecting ζ = −v ·ξ, α1 = Σmκ, α2 = Σκ2 , Ψ = α1e
1 +α2e

2, it is easily checked

that ζA0Ψ + AΨ = 0 when q = 0.

This problem, however, is artificial and due to the lack of dissipativity properties

associated with the electric charge equation, which must guarantee that the charge

remains zero. Two equivalent form can be introduced for the system governing am-

bipolar plasmas, that is, such that regular solutions coincide, and which guarantee

strict dissipativity.

One can first modify chemistry production rates Ω in the form

Ω = Ω
(1)

+ Ω
(2)

,

where Ω
(1)

is the previous source term given in Theorem 6.2 and Ω
(2)

is defined by

Ω
(2)

= L
(2)

W, with

L
(2)

=




0 0 01,ns+2

0 α 01,ns+2

0ns+2,1 0ns+2,1 0ns+2,ns+2


 ,

where α > 0 is a positive parameter. In this situation, the null space of B(We, ξ, ε)

is unchanged, but e2 is no longer in the null space L(We, ε) so that

N(B(We, ξ, ε)) ∩ N(L(We, ε)) = Re1 ,

and strict dissipativity is then easily established. Note that the corresponding charge

equation reads

∂tq + ∂x · (qv) = −αq ,
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and contains a consumption term −αq. This equation, of course, guarantee that

the charge remains zero if q0 = qe = 0, so that physical solutions of the modified

system coincide with physical solutions of the original system.

A second modification, which has interesting numerical consequences,6 consists

in modifying the diffusion coefficients. The resulting charge equation then contains

a diffusion term and only one hyperbolic component remains. More specifically, we

modify the matrices Bij , i, j ∈ C, in the form

Bij = B
(1)

ij + δijB
(2)

, i, j ∈ C ,

where B
(1)

ij is the previous matrix given in Theorem 6.2 and B
(2)

is defined by

B
(2)

=




0 0 01,ns+2

0 α 01,ns+2

0ns+2,1 0ns+2,1 0ns+2,ns+2


 ,

where α > 0 is a positive parameter. In this situation, the null space of B(We, ξ, ε)

do not contains e2 and the null space L(We, ε) is unchanged so that

N(B(We, ξ, ε)) ∩ N(L(We, ε)) = Re1 ,

and strict dissipativity is obtained. The corresponding charge equation now reads

∂tq + ∂x · (qv) = ∂x · (α∂xq) ,

and the diffusion term ∂x · (α∂xq) as a stabilizing effect.6 This equation guarantees

again that the charge remains zero if q0 = qe = 0, so that physical solutions of the

modified system coincide with physical solutions of the original system. Of course,

both modifications could also be combined.
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