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Abstract

Higher order entropies are kinetic entropy estimators suggested by Enskog expansion of Boltz-

mann entropy. These quantities are quadratic in the density ρ, velocity v and temperature T
renormalized derivatives. We investigate asymptotic expansions of higher order entropies for com-

pressible flows in terms of the Knudsen ǫk and Mach ǫm numbers in the natural situation where

the volume viscosity, the shear viscosity, and the thermal conductivity depend on temperature,

essentially in the form T κ . Entropic inequalities are obtained when ‖ log ρ‖BMO , ǫm‖v/
√

T‖L∞ ,

‖ log T‖BMO , ǫk‖h∂xρ/ρ‖L∞ , ǫkǫm‖h∂xv/
√

T‖L∞ , ǫk‖h∂xT/T‖L∞ , and ǫ2k‖h2∂2

x T/T‖L∞ are small

enough, where h = 1/ρT
1
2
−κ is a weight associated with the dependence on density and tempera-

ture of the mean free path. AMS subject classifications : 35K, 76N, 82A40.

1 Introduction

The notion of entropy has been shown to be of fundamental importance in fluid modeling from both
a physical and mathematical point of view [3, 4, 5, 6, 7, 8, 10, 15, 16, 19, 23, 28]. We have introduced
in previous work [11, 12, 13, 14] a notion of kinetic entropy estimators for fluid models, suggested by
Enskog expansion of Boltzmann kinetic entropy. Conditional higher order entropic inequalities have
been established in the situations of incompressible flows [11, 12, 13] as well as compressible flows [14]
spanning the whole space.

In this paper, we investigate asymptotic expansions of higher order entropies for compressible fluids
and study the corresponding conditional entropic inequalities when the Mach number ǫm and the
Knudsen number ǫk are small. In contrast, although higher order entropies are suggested by Enskog
expansion, only incompressible fluids [11, 12, 13] or compressible fluid equations with coefficients of
order unity were considered in previous work [14].

In Section 2 we first summarize the mathematical and physical motivations for higher order entropies
which are kinetic entropy estimators for fluid models. The corresponding balance equations may also
be seen as a thermodynamic generalization of Bernstein equation to systems of partial differential
equations associated with renormalized variables [12].

We introduce in Section 3 the natural rescaled variables and small parameters associated with
fluid models, notably the Mach number ǫm and the Knudsen number ǫk. Thanks to the rescaled
variables, the governing equations and the higher order entropies are rewriten in terms of ǫm and ǫk.
We also introduce the molecular coordinates—associated with the particle collision time and the mean
free path—which are such that all small parameters are eliminated from the corresponding system of
partial differential equations. The volume viscosity, the shear viscosity and the thermal conductivity
are assumed to depend on temperature as given by the kinetic theory, that is, essentially in the form
of a power law of temperature Tκ with a common exponent κ.

In Section 4 we summarize weighted inequalities in Sobolev and Lebesgue spaces [12, 14]. These
inequalities are required for renormalized variables with powers of density or temperature as weights as
well as for fluid models with temperature dependent thermal conductivity and viscosities. We further
specify how the various inequalities are transformed by a change of scale in the coordinate system.

In Section 5 we investigate Boltzmann kinetic entropy estimators taking into account the natural
small parameters of fluid models. We derive parameter dependent balance equations for higher order
entropic correctors as well as for extra correctors associated with density which is a hyperbolic vari-
able. We then study entropic estimates by combining the correctors balance equations with weighted
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inequalities. Entropic estimates are obtained when the quantity

χ =‖ log ρ‖BMO + ǫm‖v/
√
T‖L∞ + ‖ logT ‖BMO + ǫk‖h∂xρ/ρ‖L∞

+ ǫkǫm‖h∂xv/
√
T‖L∞ + ǫk‖h∂xT/T ‖L∞ + ǫ2

k
‖h2∂2

xT/T ‖L∞, (1.1)

is small enough, where h = 1/ρT
1
2
−κ is a weight associated with the dependence on temperature and

density of the mean free path.
Note that the quantity χ is small when the Mach number is small since we formally have χ = O(ǫm).

Assuming that the Mach number is small is equivalent to the underlying assumption of a small Knudsen
number since ǫm = Re ǫk where Re is the Reynolds number. In addition, χ is scaling invariant for the
changes of scales naturally associated with the solutions of the compressible Navier-Stokes equations.
Finally, kinetic entropy estimators are shown to be closely associated with Sobolev norms of the fluid
entropy in molecular coordinates.

2 Higher order entropies

In this section we briefly motivate the introduction of higher order entropies by discussing Bernstein
equations and inspecting Enskog expansion of Boltzmann kinetic entropy [11, 12, 14]

2.1 A thermodynamic interpretation of Bernstein equations

For parabolic or elliptic scalar equations, a priori gradient estimates can be obtained by using Bernstein
method [1, 22]. Considering the heat equation

∂tu− ∆u = 0,

and defining |∂ku|2 =
∑

1≤i1,··· ,ik≤n(∂i1 · · ·∂ik
u)2, Bernstein equation for the kth derivatives can be

written in the form
∂t|∂ku|2 − ∆|∂ku|2 + 2|∂k+1u|2 = 0. (2.1)

The structure of (2.1) appears to be formally similar to that of an entropy balance, where |∂ku|2,
k ≥ 1, play the rôle of generalized entropies, even though there also exist zeroth order entropies like
u2. In the next section, we introduce a kinetic framework supporting this entropic interpretation.

2.2 Enskog expansion of Boltzmann kinetic entropy

In a semi-quantum framework, the state of a polyatomic gas is described by a particle distribution
function f(t, x, c, i)—governed by Boltzmann equation—where t denotes time, x the n-dimensional
spatial coordinate, c the particle velocity, i the index of the particle quantum state, and I is the
corresponding indexing set [4, 6, 8, 10]. Approximate solutions of Boltzmann’s equation can be obtained
from a first order Enskog expansion f = f (0)

(
1 + εφ(1) + O(ε2)

)
where f (0) is the local Maxwellian

distribution, φ(1) the perturbation associated with the Navier-Stokes regime and ε the usual Enskog
formal expansion parameter. The compressible Navier-Stokes equations can then be obtained upon
taking moments of Boltzmann’s equation [5, 8, 10].

The kinetic entropy Skin = −kB
∑

i∈I
∫

Rnf
(
log f − 1

)
dc, where kB denotes Boltzmann constant,

satisfies the H theorem, that is, the second principle of thermodynamics. Enskog expansion f/f (0) =
1 + εφ(1) + · · · + ǫ2kφ(2k) + O(ε2k+1) then induces expansions for Skin in the form

Skin − S(0) = ε2S(2) + ε3S(3) + · · · + ε2kS(2k) + O(ε2k+1), (2.2)

where S(0) is the zeroth order fluid entropy evaluated from f (0) and where S(j) is a sum of terms in
the form kB

∑
i∈I

∫
Rn

∏
1≤i≤j

(
φ(i)

)νi
f (0) dc with nonnegative integers νi ≥ 0, 1 ≤ i ≤ j, such that

j =
∑

1≤i≤j iνi. For compressible polyatomic gases, using a single term in orthogonal polynomial
expansions of perturbed distribution functions, one can establish that

−ρS(2) =
λ2

2rgcpT

|∂xT |2
T 2

+
3cvκ

2

4cintT

(∂x·v)2
rgT

+
η2

4T

|d|2
rgT

, (2.3)

where T denotes the absolute temperature, ρ the density, v the gas velocity, d = ∂xv+ ∂xv
t − 2

n
(∂x·v) I

the deviatoric part of the strain rate tensor, |d|2 the sum |d|2 =
∑

ij d
2
ij , cp the constant pressure
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specific heat per unit mass, cv the constant volume specific heat per unit mass, rg the gas constant
per unit mass, cint the internal specific heat per unit mass, λ the thermal conductivity, η the shear
viscosity, κ the volume viscosity, and the actual values of the numerical factors are evaluated here for
n = 3.

From the general expression of φ(i) in the absence of external forces acting on the particles, one can
further establish that for any j ≥ 2

S(j) = ρrg
( η

ρ
√
rgT

)j
∑

ν

cν
∏

1≤|α|≤j

(∂α
x ρ

ρ

)να
( ∂α

x v√
rgT

)ν′

α
(∂α

x T

T

)ν′′

α

, (2.4)

where να, ν
′
α, ν

′′
α ∈ N, α ∈ N

n, and ν = (να, ν
′
α, ν

′′
α)1≤|α|≤j must be such that

∑
1≤|α|≤j |α|(να + ν′α +

ν′′α) = j and where the coefficients cν are smooth scalar functions of logT of order unity. In the even
case j = 2k, after integrations by parts in

∫
RnS

(2k) dx, in order to eliminate spatial derivatives of

order strictly greater than k, and by using interpolation inequalities, one obtains that |
∫

RnS
(2k) dx| is

essentially controled by the integral of

γ[k] = ρrg
( η

ρ
√
rgT

)2k
(∣∣∂

k
x ρ

ρ

∣∣2 +
∣∣ ∂

k
x v√
rgT

∣∣2 +
cv
rg

∣∣∂
k
x T

T

∣∣2
)
, (2.5)

or equivalently of

γ̃[k] = ρrg
( η

ρ
√
rgT

)2k (
|∂k

x log ρ|2 + |∂k
x (v/

√
rgT )|2 +

cv
rg
|∂k

x logT |2
)
, (2.6)

and in the odd case j = 2k − 1 |
∫

RnS
(2k−1) dx| is also controled by

∫
Rnγ

[k] dx and
∫

Rnγ
[k−1] dx. This

suggests quantities in the form γ[k] or γ̃[k] as (2k)th order kinetic entropy correctors—or kinetic entropy
deviation estimators [11, 12, 14]. We are thus investigating majorizing entropic correctors that we are
free to modify for convenience, e.g., by multiplying the temperature derivatives by the factor cv/rg.
These correctors may also be rescaled by mutiplicative constants depending on k and their temperature
dependence may be simplified in accordance with that of transport coefficients. Finally, a similar
analysis can also be conducted for the Fisher information and suggests the same quantities γ[k] or γ̃[k]

as higher order kinetic information correctors.

2.3 Persistence of Boltzmann entropy

Denoting by γ[0] a nonnegative quantity associated with the zeroth order entropy S(0), we will in-
vestigate entropicity properties of the kinetic entropy estimators γ[0] + · · · + γ[k], 0 ≤ k ≤ l, for the
solutions of a second order system of partial differential equations modeling a compressible fluid. For
this fluid system, the zeroth order entropy S(0) is already of fundamental importance as imposed by
its hyperbolic-parabolic structure and the corresponding symmetrizing properties [10, 15, 19, 20]. We
thus only consider the quantities γ[0] + · · · + γ[k], 0 ≤ k ≤ l, as a family of mathematical entropy
estimators—of kinetic origin—and we will establish that they indeed satisfy conditional entropic prin-
ciples for solutions of Navier-Stokes type equations, so that, in some sense, there is a persistence of
Boltzmann entropy at the fluid level.

This point of view differs from that of thermodynamic theories that have already considered en-
tropies differing from that of zeroth order, that is, entropies depending on transport fluxes or macro-
scopic variable gradients. These generalized entropies have been associated notably with Burnett type
equations or extended thermodynamics. In both situations, new macroscopic equations are correspond-
ingly obtained, that is, ‘extended fluid models’, which are systems of partial differential equations of
higher orders than Navier-Stokes type equations.

3 Nondimensionalization

We introduce in this section the rescaled fluid variables, the rescaled fluid equations, and the natural
small parameters needed to investigate asymptotic expansions of higher order entropies. We only
consider compressible flows spanning the whole space that are ‘constant at infinity’.
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3.1 Rescaled variables

In order to investigate asymptotic expansions of higher order entropies, we need to specify the order
of magnitude of the various terms appearing in fluid governing equations. To this purpose, for each
quantity φ, we introduce a typical order of magnitude denoted by <φ>. In particular, we introduce
a characteristic length <x>, velocity <v>, density <ρ>, viscosity <η>, and pressure <p>. The
order of magnitude of the sound velocity c is then <c>2 = <p>/<ρ> and from the state law we
also have <c>2 = <rg><T > where rg denotes the gas constant per unit mass and T the absolute
temperature, and the Reynolds number is given by

Re =
<ρ><v><x>

<η>
. (3.1)

An important aerodynamic length upon consideration is the dissipation length <x>dis defined such
that the corresponding Reynolds number is unity <x>dis = <η>/<ρ><v> and we can then write
Re = <x>/<x>dis. We define the characteristic time from the characteristic length <x> and the
characteristic velocity <v> by letting <t> = <x>/<v>.

We also introduce a typical mean free path <l> and from the kinetic theory of gases we have
<η> = <ρ><c><l> [5, 8]. Denoting by ǫk the Knudsen number <l>/<x> and ǫm the Mach
number <v>/<c> we then have the Von Karman relation

ǫm =
<v>

<c>
=
<l>

<x>
Re = ǫkRe, (3.2)

which relates ǫk and ǫm. We will assume in the following that the Knudsen number ǫk is small and the
Mach number ǫm will also be small, since we are especially interested in flows where the characteristic
length <x> is the dissipative length <x>dis and the Reynolds number is then unity.

Upon defining the reduced quantity φ̂ = φ/<φ> associated with each quantity φ of the fluid model,
we can now estimate the order of magnitude of each term in the governing partial differential equations
and in the definition of higher order entropies. We will assume, for the sake of simplicity, that we have
r̂g = 1 so that ĉ 2 = T̂ in particular.

3.2 Rescaled governing equations

The equations governing compressible flows can be written in the form [10, 23]

∂tρ+ ∂x·(ρv) = 0, (3.3)

∂t(ρv) + ∂x·(ρv⊗v) + ∂xp+ ∂x·Π = 0, (3.4)

∂t(ρe) + ∂x·(ρev) + ∂x·Q = −Π :∂xv − p ∂x·v, (3.5)

where t is time, x the n-dimensional spatial coordinate, ρ the mass density, v the velocity vector, p the
pressure, Π the viscous tensor, e the internal energy per unit mass, and Q the heat flux. The viscous
tensor and the heat flux are given by

Π = −κ ∂x·vI − η (∂xv + ∂xv
t − 2

n
∂x·vI), (3.6)

Q = −λ∂xT, (3.7)

where κ is the volume viscosity, I the unit tensor, η the shear viscosity, λ the thermal conductivity,
and we denote by d = ∂xv + ∂xv

t − 2
n
∂x·vI the deviatoric part of the strain rate tensor. For the sake

of simplicity the internal energy per unit mass e is taken in the form e = cvT where cv is a constant.
Upon using the general notation of Section 3.1 the reduced equations can then be written

∂
t̂
ρ̂+ ∂

x̂
·(ρ̂ v̂) = 0, (3.8)

∂
t̂
(ρ̂ v̂) + ∂

x̂
·(ρ̂ v̂⊗v̂) + 1

ǫ2
m

∂x̂ p̂+ 1
Re∂x̂ ·Π̂ = 0, (3.9)

∂
t̂
(ρ̂ ê) + ∂

x̂
·(ρ̂ v̂ ê) + 1

Re∂x̂
·Q̂ = − ǫ2

m

Re Π̂ :∂
x̂
v̂ − p̂ ∂

x̂
· v̂. (3.10)

Note that, in contrast with the rescaled system (3.8)–(3.10), the compressible flow model previously con-
sidered in [14] did not contain any small parameter. The asymptotic analysis of higher order entropies
for small ǫk and ǫm numbers has only been investigated in the simpler situation of incompressibles flows
[13].
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Remark 3.1 Theoretical calculations and experimental measurements have shown that the viscosity
ratio κ/η is of order unity for polyatomic gases [2, 5, 8]. Volume viscosity also arise in dense gases
and in liquids so that its absence in monatomic dilute gases is an exception rather than a rule [2, 8].

Remark 3.2 The dimension n appearing in the coefficient 2/n of the viscous tensor is normally the
full spatial dimension, that is, the dimension n′ of the velocity phase space of the associated kinetic
model. We may still assume that the spatial dimension of the model has been reduced, that is, the
equations are considered in R

n with n < n′. The full size viscous tensor Π ′ is then a matrix of order
n′, and the corresponding coefficient must be 2/n′. However, if we denote by Π the upper left block of
size n of Π ′, that is, the useful part of Π ′, we may rewrite Π in the form

Π = −
(
κ+ ( 2

n
− 2

n′
)η

)
∂x·v I − η

(
∂xv + ∂xv

t − 2
n
∂x·v I

)
, (3.11)

where I is the unit tensor in n dimensions. Therefore, using a smaller dimension n instead of the full
dimension n′ in the coefficient of the viscous tensor is equivalent to increasing the volume viscosity by
the amount 2η (n′ − n)/nn′.

3.3 Temperature dependence of transport coefficients

Previous analyses have shown that it is necessary to take into account the temperature dependence
of transport coefficients [11, 12, 14]. The kinetic theory of polyatomic gases lead to the following
simplified assumptions concerning the temperature dependence of the thermal conductivity λ(T ), the
volume viscosity κ(T ), and the shear viscosity η(T ), away from small temperatures. We assume that
λ, κ, and η are C∞(0,∞) and such that there exist κ, a > 0, a > 0, and aσ > 0 for any σ ≥ 1, with

aTκ ≤ λ/cv ≤ aTκ, aTκ ≤ κ ≤ aTκ, aTκ ≤ η ≤ aTκ, (3.12)

T σ
(
|∂σ

Tλ| + |∂σ
Tκ| + |∂σ

T η|
)
≤ aσ T

κ. (3.13)

Kinetic theory suggests that 1/2 ≤ κ ≤ 1 but the situations where 0 ≤ κ < 1/2 or κ > 1 are still
interesting to investigate from a mathematical point of view.

3.4 Rescaled higher order entropies

Letting <γ[k]> = <ρr> = <ρ><r> we deduce after some algebra that the rescaled higher order
entropy correctors γ̂[k] = γ[k]/<ρ><r> are given by

γ̂[k] = ǫ2k
k
ρ̂

( 1

ρ̂ T̂
1
2
−κ

)2k{∣∣∂
k
x̂
ρ̂

ρ̂

∣∣2 + ǫ2
m

∣∣ ∂
k
x̂
v̂√
T̂

∣∣2 + cv
∣∣∂

k
x̂
T̂

T̂

∣∣2
}
, (3.14)

and we have recovered that the (2k)th order entropy correctors are of order O(ǫ2k
k

) as was expected
from their formal construction in Section 2.

The mathematical fluid entropy −S(0) can be shown to be a strictly convex function of the conser-
vative variables U = (ρ, ρv, Etot) where the total energy per unit volume is Etot = ρ(e+ 1

2v·v) [10, 20].

We define γ[0] = C0ψ
[0] where ψ[0] is the modified zeroth order entropy [18, 19]

ψ[0] = −S(0) + S(0)
∞ + (∂ρS

(0))∞(ρ− ρ∞) + (∂EtotS(0))∞(Etot − Etot
∞ ),

and C0 a positive constant to be determined later. The rescaled zeroth order term γ[0] is easily rewritten
in the form

γ̂[0]/C0 = ρ̂ log
( ρ̂

ρ̂∞

)
−

(
ρ̂− ρ̂∞

)
+ ǫ2

m

1
2 ρ̂

v̂2

T̂∞
+ ρ̂ĉv

( T̂ − T̂∞

T̂∞
− log

( T̂

T̂∞

))
. (3.15)

3.5 Molecular coordinates

The proper framework required to investigate asymptotic expansions of higher order entropies involve
the rescaled coordinates (t̂, x̂), the rescaled unknowns (ρ̂, v̂, T̂ ), and the rescaled governing equations
(3.8)–(3.10) depending on the small parameters ǫk and ǫm. In this framework, parameter dependent
a priori estimates and entropic inequalities can directly be obtained from the rescaled fluid governing
equations.
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On the other hand, it is also possible to completely eliminate the parameters ǫk and ǫm from the
governing equations and from higher order entropy expansions by using a set of coordinates associated
with the molecular properties of the fluid. More specifically, let us introduce the new coordinates

x̄ =
x̂

ǫk
, t̄ =

t̂

ǫkǫm
, (3.16)

associated with the characteristic length ǫk<x> = <l> and the characteristic time ǫkǫm<t> =
<l>/<c> so that x̄ is measured in units of the mean free path <l> and t̄ in units of the particle

collision time <l>/<c>. We then have ∂α
x̄ = ǫ

|α|
k ∂α

x and ∂σ
t̄

= (ǫkǫm)σ∂σ
t for any multiindex α ∈ N

n

and any σ ∈ N. By using these molecular coordinates (t̄, x̄), and upon defining the velocity v by

v = ǫm v̂ = ǫm
v

<v>
=

v

<c>
, (3.17)

we obtain after a little algebra the governing equations

∂
t̄
ρ+ ∂x̄·(ρv) = 0, (3.18)

∂
t̄
(ρv) + ∂x̄·(ρv⊗v) + ∂x̄ p+ 1

Re∂x̄·Π = 0, (3.19)

∂
t̄
(ρe) + ∂x̄·(ρve) + 1

Re∂x̄·Q = − 1
ReΠ :∂x̄v − p∂x̄·v, (3.20)

where Π = −κ∂x̄·vI − ηd̄, d̄ = ∂x̄v + ∂x̄v
t − 2

n
∂x̄·vI and Q = −λ∂x̄T . In these equations, with a

slight abuse of notation, we have denoted by the same letter the corresponding functions expressed
in physical x or molecular x̄ coordinates. It is then remarkable that all small parameters have been
eliminated from the system (3.18)–(3.20) so that we may use any result obtained in previous work [14].
A second method to investigate asymptotic expansions is therefore to use molecular coordinates and
to map back these results to the unknowns (ρ, v, T ) written in terms of the macroscopic coordinates
(t̂, x̂). These two methods are of course equivalent but working in physical coordinates is usually more
instructive and more flexible.

4 Weighted inequalities

Higher order entropies naturally introduce weight factors in the form of powers of temperature or
density when estimating Lebesgue norms of the flow variables derivatives. We restate here weighted
estimates of derivatives [9, 12, 14, 25, 26] and further specify the scaling dependence of the correspond-
ing estimating constants. We work with dimensionless quantities and omit hat accents for the sake
of notational simplicity. We denote by BMO the space of functions with bounded mean oscillations
[17, 23, 25, 26], by C0

0 the space of continuous functions that vanish at infinity and by Hk the usual
Sobolev spaces [22, 23, 25].

4.1 Weighted products of derivatives

We investigate weighted products of derivatives of the rescaled unknowns r, τ and w, that will be taken
to be r = log ρ, w = v/

√
T , and τ = logT in our applications. In the following Theorem, since in our

applications w and τ are parabolic variables, the total number of derivations k can be left unchanged.

Theorem 4.1 Let k ≥ 1 be an integer, θ̄ > 0 be positive, 1 < p <∞, τ be such that τ−τ∞ ∈ Hk(Rn)∩
C0
0(Rn) for some constant τ∞ and let r ∈ BMO. There exist scale invariant positive constants δ(n, p, θ̄)

and c(k, n, p), only depending on (n, p, θ̄) and (k, n, p), respectively, such that if ‖r‖BMO+‖τ‖BMO < δ,
then for any a, b with |a|+ |b| ≤ θ̄, any integer l ≥ 1, and any multiindices αj, 1 ≤ j ≤ l, with |αj | ≥ 1,
1 ≤ j ≤ l, and

∑
1≤j≤l |αj | = k, whenever eaτ+br∂kτ ∈ Lp(Rn), the following inequality holds

∥∥∥eaτ+br
∏

1≤j≤l

∂αj

τ
∥∥∥

Lp
≤ c

∥∥τ
∥∥l−1

BMO

∥∥eaτ+br∂kτ
∥∥

Lp , (4.1)

where we have defined for any smooth scalar function φ

|∂kφ|p =
∑

|α|=k

k!

α!

(
∂αφ

)p
=

∑

1≤i1,...,ik≤n

(∂i1 · · · ∂ik
φ)p. (4.2)

6



Further assuming w ∈ Hk(Rn) ∩ C0
0(Rn), eaτ+br∂kw ∈ Lp(Rn), and 0 ≤ l̄ ≤ l, then

∥∥∥eaτ+br
∏

1≤j≤l̄

∂αj

w
∏

l̄+1≤j≤l

∂αj

τ
∥∥∥

Lp
≤ c

(∥∥w
∥∥

BMO
+

∥∥τ
∥∥

BMO

)l−1

×
(∥∥eaτ+br∂kw

∥∥
Lp +

∥∥eaτ+br∂kτ
∥∥

Lp

)
, (4.3)

where we have defined
∣∣∂kw

∣∣p =
∑

1≤i≤n

∣∣∂kwi

∣∣p and where, in the left hand member of (4.3), with a
slight abuse of notation, we have denoted by w any of its components w1, . . . , wn.

Since in our applications r = log ρ will be a hyperbolic variable, the total number of derivations
appearing in the estimates need to be decreased by using a weighted L∞ norms of the gradients [14].
We denote by by C1

0 the space of continuously differentiable functions that vanish at infinity with their
gradients.

Theorem 4.2 Let k ≥ 2 be an integer, θ̄ > 0 be positive, 1 < p < ∞, τ , r, w be such that τ −
τ∞, r − r∞, w ∈ Hk−1(Rn) ∩ C1

0(Rn) for some constants τ∞ and r∞. Let a, b, ā, and b̄ be constants
with |a| + |b| ≤ θ̄, and |ā| + |b̄| ≤ θ̄, where θ̄ > 0 and define g = exp(aτ + br) and h = exp(āτ + b̄r).
Let l ≥ 2, let αj, 1 ≤ j ≤ l, be multiindices with |αj | ≥ 1, 1 ≤ j ≤ l, and

∑
1≤j≤l |αj | = k.

There exist scale invariant positive constants δ(k, n, p, θ̄) and c(k, n, p, θ̄), only depending on (k, n, p, θ̄),
such that if ‖r‖BMO + ‖τ‖BMO < δ, then whenever ghk−1∂k−1r ∈ Lp(Rn), ghk−1∂k−1w ∈ Lp(Rn),
ghk−1∂k−1τ ∈ Lp(Rn), ghk−2∂k−2r ∈ Lp(Rn), ghk−2∂k−2w ∈ Lp(Rn), ghk−2∂k−2τ ∈ Lp(Rn), and
1 ≤ l̄ ≤ l̃ ≤ l, we have the estimates

∥∥∥ghk
∏

1≤j≤l̄

∂αj

r
∏

l̄+1≤j≤l̃

∂αj

w
∏

l̃+1≤j≤l

∂αj

τ
∥∥∥

Lp
≤ c‖w‖l−2

BMO‖h∂xw‖L∞‖ghk−1∂k−1
w‖Lp

+ c1k≥3‖w‖(l−3)+

BMO ‖h∂xw‖2
L∞‖ghk−2∂k−2

w‖Lp , (4.4)

where we have defined w = (r, w, τ), ‖w‖BMO = ‖r‖BMO + ‖w‖BMO + ‖τ‖BMO, ‖h∂xw‖L∞ =
‖h∂xr‖L∞ + ‖h∂xw‖L∞ + ‖h∂xτ‖L∞ , ‖ghm∂m

w‖p
Lp = ‖ghm∂mr‖p

Lp + ‖ghm∂mw‖p
Lp + ‖ghm∂mτ‖p

Lp

for any m ∈ N, and where 1k≥3 = 0 if k < 3 and 1k≥3 = 1 if k ≥ 3. In particular, in the situation
2 ≤ k ≤ 3, the second term in the right hand side of in (4.4) is absent.

4.2 Weighted products of renormalized derivatives

We now estimate products of derivatives of density, temperature and velocity components rescaled by
the proper renormalizing factors. Theorems 4.3 and 4.4 are essentially consequences of Theorems 4.1
and 4.2 and of differential identities [12, 14].

Theorem 4.3 Let k ≥ 1 be an integer, θ̄ > 0 be positive , 1 < p <∞, T be such that T ≥ Tmin > 0 and
T−T∞ ∈ Hk(Rn)∩C0

0(Rn) for some positive constant T∞ and ρ be positive such that r = log ρ ∈ BMO.
There exist scale invariant positive constants δ(n, p, θ̄) and c(k, n, p), only depending on (n, p, θ̄) and
(k, n, p), respectively, such that if ‖ log ρ‖BMO + ‖ logT ‖BMO < δ, then for any real a and b such that
|a| + |b| ≤ θ̄, any integer l ≥ 1, and any multiindices αj, 1 ≤ j ≤ l, with |αj | ≥ 1, 1 ≤ j ≤ l, and∑

1≤j≤l |αj | = k, whenever T aρb(∂kT )/T ∈ Lp(Rn), we have the estimates

∥∥∥T aρb
∏

1≤j≤l

∂αj

T

T

∥∥∥
Lp

≤ c
∥∥logT

∥∥l−1

BMO

∥∥T aρb ∂
kT

T

∥∥
Lp . (4.5)

Assuming v ∈ Hk(Rn)∩C0
0(Rn), ‖ log ρ‖BMO+‖ logT ‖BMO+‖v/

√
T‖L∞ < δ, whenever T aρb(∂kv)/

√
T ∈

Lp(Rn), we have for 0 ≤ l̄ ≤ l

∥∥∥T aρb
∏

1≤j≤l̄

∂αj

v√
T

∏

l̄+1≤j≤l

∂αj

T

T

∥∥∥
Lp

≤ c
(∥∥ v√

T

∥∥
L∞

+
∥∥logT

∥∥
BMO

)l−1

×
(∥∥T aρb ∂

kv√
T

∥∥
Lp +

∥∥T aρb ∂
kT

T

∥∥
Lp

)
, (4.6)

where, in the left hand member, with a slight abuse of notation, we have denoted by v any of its
components v1, . . . , vn.
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Theorem 4.4 Let k ≥ 2 be an integer, θ̄ > 0 be positive , 1 < p <∞, ρ, v, T , be such that ρ ≥ ρmin,
T ≥ Tmin, and ρ − ρ∞, v, T − T∞ ∈ Hk−1(Rn) ∩ C1

0(Rn) for positive constants ρ∞, ρmin, T∞ and
Tmin. Let a, b ā, and b̄ be constants with |a| + |b| ≤ θ̄, and |ā| + |b̄| ≤ θ̄, where θ̄ > 0, and g = T aρb,
h = T āρb̄. Let l ≥ 2, let αj, 1 ≤ j ≤ l, be multiindices with |αj | ≥ 1, 1 ≤ j ≤ l, and

∑
1≤j≤l |αj | = k.

There exist scale invariant positive constants δ(k, n, p, θ̄) and c(k, n, p, θ̄), only depending on (k, n, p, θ̄),
such that if ‖ log ρ‖BMO + ‖v/

√
T‖L∞ + ‖ logT ‖BMO < δ, then whenever ghk−1∂k−1ρ/ρ ∈ Lp(Rn),

ghk−1∂k−1v/
√
T ∈ Lp(Rn), ghk−1∂k−1T/T ∈ Lp(Rn), ghk−2∂k−2ρ/ρ ∈ Lp(Rn), ghk−2∂k−2v/

√
T ∈

Lp(Rn), ghk−2∂k−2T/T ∈ Lp(Rn), we have for 0 ≤ l̄ ≤ l̃ ≤ l

∥∥∥ghk
∏

1≤j≤l̄

∂αj

ρ

ρ

∏

l̄+1≤j≤l̃

∂αj

v√
T

∏

l̃+1≤j≤l

∂αj

T

T

∥∥∥
Lp

≤ c‖w‖′ l−2
BMO‖h∂xw‖′L∞‖ghk−1∂k−1

w‖′Lp

+ c1k≥3‖w‖′ (l−3)+

BMO ‖h∂xw‖′ 2L∞‖ghk−2∂k−2
w‖′Lp , (4.7)

where, in the left hand member, with a slight abuse of notation, we have denoted by v any of its compo-
nents v1, . . . , vn and where we have denoted w = (r, w, τ) and ‖w‖′BMO = ‖ log ρ‖BMO + ‖v/

√
T‖L∞ +

‖ logT ‖BMO, ‖h∂xw‖′L∞ = ‖h∂xρ

ρ
‖L∞ + ‖h ∂xv√

T
‖L∞ + ‖h∂xT

T
‖L∞, ‖ghm∂m

w‖′pLp = ‖ghm ∂mρ
ρ

‖p
Lp +

‖ghm ∂mv√
T
‖p

Lp + ‖ghm ∂mT
T

‖p
Lp, for any m ∈ N. In particular, in the situation where 2 ≤ k ≤ 3, the

second term in the right hand side of (4.7) is absent. Note that there is a L∞ norm for the renormalized
velocity v/

√
T term in ‖w‖′BMO.

5 Asymptotics of Higher order entropy estimates

We investigate in this section parameter dependent higher order entropic estimates for compressible
flows. We investigate solutions of the compressible equations in reduced form (3.8)–(3.10) rewritten by
suppressing hat accents

∂tρ+ ∂x·(ρv) = 0, (5.1)

∂t(ρv) + ∂x·(ρv⊗v) + 1
ǫ2
m

∂xp− 1
Re∂x·

(
κ∂x·vI + η d

)
= 0, (5.2)

∂t(ρcvT ) + ∂x·(ρvcvT ) − 1
Re∂x·

(
λ∂xT

)
=

ǫ2
m

Re

(
κ(∂x·v)2 + 1

2ηd:d
)
− p∂x·v, (5.3)

where ρ is the density, v the velocity, p the pressure, κ(T ) the volume viscosity, d = ∂xv+∂xv
t− 2

n
∂x·vI

the deviatoric part of the strain rate tensor, η(T ) the viscosity, cv the constant volume heat capacity,
T the absolute temperature and λ(T ) the thermal conductivity. All these quantities are dimensionless
and we have assumed for the sake of simplicity that the internal energy is proportional to temperature
e = cvT where cv is a constant.

The relevant assumptions on the thermal conductivity λ, the volume viscosity κ and the shear
viscosity η are derived from the kinetic theory of gases as discussed in Section 3.3 [8, 10, 12].

We consider the case of functions defined on R
n with n ≥ 2, that are ‘constant at infinity’, and we

only consider smooth solutions such that

ρ− ρ∞ ∈ C
(
[0, t̄ ], H l

)
∩ C1

(
[0, t̄ ], H l−1

)
, ∂xρ ∈ L2

(
(0, t̄ ), H l−1

)
(5.4)

v, T − T∞ ∈ C
(
[0, t̄ ], H l

)
∩ C1

(
[0, t̄ ], H l−2

)
, ∂xv, ∂xT ∈ L2

(
(0, t̄ ), H l

)
, (5.5)

where l is an integer such that l ≥ [n/2] + 3, that is, l > n/2 + 2, t̄ is some positive time, ρ∞ > 0
a fixed positive density and T∞ > 0 a fixed positive temperature. We also assume that ρ and T are
such that ρ ≥ ρmin and T ≥ Tmin where ρmin > 0 and Tmin > 0 are fixed positive constants. Such
smooth solutions are known to exist either locally in time or globally when the initial state is close to
the constant state (ρ∞, 0, T∞) [10, 18, 19, 21, 23, 24, 27].

Remark 5.1 In the special case where λ = aλT
κ, η = aηT

κ, κ = aκT
κ, and cv is constant, if(

ρ(t, x), v(t, x), T (t, x)
)

is a solution of the Navier-Stokes equations (5.1)–(5.3), then
(
ξ2κ−1 ζ ρ(ξζt, ζx), ξ v(ξζ t, ζ x), ξ2 T (ξζ t, ζ x)

)
, (5.6)

is a solution for any positive ξ and ζ. For arbitrary transport coefficients, the one parameter family
obtained by letting ξ = 1 is also a family of solutions. These scaling properties hold similarly for the
systems (3.3)–(3.5), (3.8)–(3.10), (3.18)–(3.20), and the scaling properties of the incompressible case
[12] can be recovered from (5.6) by letting ζ = ξ(1−2κ).
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5.1 Higher order entropies

Following the physical ansatz (2.5)(3.14) we define the (2k)th order rescaled kinetic entropy corrector
γ[k] by

γ[k] = ρǫ2k
k
h2k

( |∂k
x ρ|2
ρ2

+ ǫ2
m

|∂k
x v|2
T

+ cv
|∂k

x T |2
T 2

)
, (5.7)

where h = 1/ρT
1
2
−κ, |∂k

x v|2 =
∑

1≤i≤n |∂k
x vi|2 and |∂k

x φ|2 =
∑

|α|=k (k!/α!)(∂α
x φ)2 for any smooth

scalar function φ like ρ, T , vi, 1 ≤ i ≤ n, and where k!/α! are the multinomial coefficients, keeping in
mind that hat accents are now omitted.

This choice of γ[k], with the coefficients cv in front of temperature derivatives, yields more convenient
higher order entropic estimates. It eliminates various quadratic terms associated with hyperbolic
variables thanks to symmetry properties. This choice can also be associated with symmetrized forms
of the system of partial differential equations. Let us denote u =

(
ρ, ρv, ρ(e+ 1

2 |v|2)
)

the conservative

variable, v = −(∂US
(0))t the entropic variable, and z =

(
ρ, v, T

)t
the natural variable, which is

also a normal variable [15, 20]. Defining the matrix A0 = (∂
z
v)t∂

u
v(∂

z
v), which is associated with

normal forms [15, 20], one can then write the higher order entropy correctors in the form γ[k] =
ǫ2k
k
h2k<∂k

z, A0∂
k
z>, where h is the weight associated with the dependence of the mean free path on

density and temperature h = l/<l>. This choice can also be associated with a ‘spatial gradient’ Fisher
information with for instance γ[1] = ǫ2

k
h2

∑
i∈I kB

∫
Rn |∂x log f (0)|2f (0) dc. The weight h is such that the

spatial derivative operator h∂x is invariant by the changes of scales (5.6) naturally associated with the
Navier-Stokes equations.

Thanks to the fact that v and T are parabolic variables, we can expect source terms in the form
|∂k+1

x T/T |2 and |∂k+1
x v/

√
T |2 to appear in the governing equation for γ[k]—up to weight factors. How-

ever, since ρ is a hyperbolic variable, there will be no such corresponding source term |∂k+1
x ρ/ρ|2 for

density. A priori estimates for density derivatives and more generally of hyperbolic variables deriva-
tives indeed require to introduce extra entropic corrector terms. These extra corrector terms will yield
source terms in the form |∂k

x ρ/ρ|2. These terms are similar in spirit to the perturbed quadratic terms
introduced by Kawashima in order to obtain hyperbolic variable derivatives estimates for linearized
equations around equilibrium states and decay estimates [19]. They are used here with renormal-
ized variables as well as with powers of h as weights factors in order to obtain higher order entropic
inequalities. We define the quantity γ[k− 1

2
] by

γ[k− 1
2
] = ρǫ2k−1

k
h2k−1ǫm

∂k−1
x v√
T

·∂
k−1
x ∂xρ

ρ
, (5.8)

where we have set for convenience

∂k
x φ ∂

k
xψ =

∑

|α|=k

k!

α!
∂α
x φ ∂

α
x ψ, ∂k

x v·∂k
x ∂xρ =

∑

|α|=k

1≤i≤n

k!

α!
∂α
x vi ∂

α
x ∂iρ, (5.9)

and we will see that in the γ[k− 1
2
] governing equation there is a source term in the form |∂k

x ρ/ρ|2—up

to weight factors. From a physical point of view, we also note that γ[k− 1
2
] is of the general form (2.4)

for S(2k−1). Finally, we define the (2k)th order kinetic entropy estimator by

Γ[k] = γ[0] +
∑

1≤i≤k

(γ[i] + aγ[i− 1
2
]), k ≥ 0. (5.10)

Note that the quantities γ[i− 1
2
], 1 ≤ i ≤ k, are multiplied by the small factor a in (5.10) so as to not

modify the majorizing properties of the correctors γ[i], 0 ≤ i ≤ k.
Following the physical ansatz (2.6), we define similarly the modified (2k)th order kinetic entropy

corrector γ̃[k] by
γ̃[k] = ρǫ2k

k
h2k

(
|∂k

x r|2 + ǫ2
m
|∂k

xw|2 + cv|∂k
x τ |2

)
, (5.11)

where r = log ρ, w = v/
√
T , and τ = logT , as well as

γ̃[k− 1
2
] = ρǫ2k−1

k
h2k−1 ǫm∂

k−1
x w·∂k−1

x ∂xr, (5.12)

γ̃[0] = γ[0], and the modified (2k)th order kinetic entropy estimators

Γ̃[k] = γ̃[0] +
∑

1≤i≤k

(γ̃[i] + aγ̃[i− 1
2
]), k ≥ 0. (5.13)
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The entropy correctors γ[k] and γ̃[k], as well as the estimators Γ[k] and Γ̃[k], will be shown to have
similar properties and both may be used to derive a priori estimates. Strictly speaking, we should
term γ[k] and γ̃[k] “(2k)th order kinetic entropy correctors” or “(2k)th order kinetic entropy deviation

estimators”and γ[k− 1
2
] and γ̃[k− 1

2
] “(2k−1)th order kinetic entropy correctors”, and Γ[k] and Γ̃[k] “(2k)th

order kinetic entropy estimators”. However, we will often informally term γ[k], γ̃[k], γ[k− 1
2
], γ̃[k− 1

2
], Γ[k]

and Γ̃[k] “higher order entropies”.

5.2 Balance equations

We present in this section the parameter dependent balance equations for γ[k] and γ[k− 1
2
]. Similar

equations can be derived for γ̃[k] and γ̃[k− 1
2
] but are omitted.

Proposition 5.2 Let (ρ, v, T ) be a smooth solution of the compressible Navier-Stokes equations (5.1)–
(5.3) with regularity (5.4)(5.5) and let 1 ≤ k ≤ l. Then the following balance equation holds in
D′((0, t̄ ) × R

n
)

∂tγ
[k] + ∂x·(vγ[k]) + ∂x·ϕ[k]

γ + π[k]
γ + Σ

[k]
γ + ω[k]

γ = 0, (5.14)

where ϕ
[k]
γ ∈ L1

(
(0, t̄ ), L1(Rn)

)
is a flux and π

[k]
γ , Σ

[k]
γ , ω

[k]
γ ∈ L1

(
(0, t̄ ), L1(Rn)

)
are source terms. The

term π
[k]
γ is given by

π[k]
γ =

2g2ǫ2k
k
h2(k+1)

Re

( λ

Tκ

|∂k+1
x T |2
T 2

+ ǫ2
m

η

Tκ

|∂k+1
x v|2
T

+ ǫ2
m

1
3η + κ

Tκ

|∂k
x (∂x·v)|2
T

)
, (5.15)

where g = ρT
1
2
(1−κ) and h = 1/ρT

1
2
−κ, so that π

[k]
γ only contains the temperature and velocity (k+1)th

derivatives squared as expected from the hyperbolic–parabolic structure of system of partial differential

equations. The term Σ
[k]
γ is in the form

Σ
[k]
γ =

∑

σνµφ

ǫ2k
k
cσνµφ

Re
T σ−κ∂σ

Tφ Π(k+1)
ν Π(k+1)

µ +
k(1 − 2κ)λ

cvTκ

g2ǫ2k
k
h2(k+1)

Re

|∂k
x ρ|2
ρ2

∆xT

T
, (5.16)

where cσνµφ are constants and the sums are over φ ∈ {λ, η, κ }, 0 ≤ σ ≤ k, ν = (να, ν
′
α, ν

′′
α)1≤|α|≤k+1,

µ = (µα, µ
′
α, µ

′′
α)1≤|α|≤k+1, να, ν

′
α, ν

′′
α, µα, µ

′
α, µ

′′
α ∈ N, α ∈ N

n. The products Π
(k+1)
ν and Π

(k+1)
µ are

defined by

Π(k+1)
ν = g hk+1

∏

1≤|α|≤k+1

(∂α
x ρ

ρ

)να
(
ǫm
∂α
x v√
T

)ν′

α
(∂α

x T

T

)ν′′

α

, (5.17)

where v denotes—with a slight abuse of notation—any of its components v1, . . . , vn, and ν must be such
that ∑

1≤|α|≤k+1

|α|(να + ν′α + ν′′α) = k + 1,
∑

|α|=k+1

να = 0,

so that there is a total number of k+1 derivations and there are no derivative of order k+1 of density.
Moreover, there is at most one derivative of order k + 1 of temperature or velocity components in the

product Π
(k+1)
ν Π

(k+1)
µ so that ∑

|α|=k+1

(ν′α + ν′′α + µ′
α + µ′′

α) ≤ 1,

and one of the terms Π
(k+1)
ν or Π

(k+1)
µ is always split between several derivative factors. Furthermore

the term ω
[k]
γ is given by

ω[k]
γ =

∑

νµ

ǫ2k−1
k

Re
cνµΠ(k)

ν Π(k+1)
µ , (5.18)

where cνµ are constants and we use similar notation for Π
(k)
ν as for Π

(k+1)
µ and the summation extends

over ∑

1≤|α|≤k

|α|(να + ν′α + ν′′α) = k,
∑

1≤|α|≤k

|α|(µα + µ′
α + µ′′

α) = k + 1,

so that in particular
∑

|α|=k+1(µα + µ′
α + µ′′

α) = 0 and there are always at least two factors in the

product Π
(k+1)
µ .
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Proof. The proof is lenghty and similar to the proof given in [14] for unscaled equations. ⊓⊔

Remark 5.3 Note that the velocity v = ǫmv naturally appears in the multilinear products (5.17).

Proposition 5.4 Let (ρ, v, T ) be a smooth solution of the compressible Navier-Stokes equations (5.1)–
(5.3) with regularity (5.4)(5.5) and let 1 ≤ k ≤ l. Then the following balance equation holds in
D′((0, t̄ ) × R

n
)

∂tγ
[k− 1

2
] + ∂x·(vγ[k− 1

2
]) + ∂x·ϕ

[k− 1
2
]

γ + π
[k− 1

2
]

γ + Σ
[k− 1

2
]

γ + ω
[k− 1

2
]

γ = 0, (5.19)

where ϕ
[k− 1

2
]

γ ∈ L1
(
(0, t̄ ), L1(Rn)

)
, and π

[k− 1
2
]

γ , Σ
[k− 1

2
]

γ , ω
[k− 1

2
]

γ ∈ L1
(
(0, t̄ ), L1(Rn)

)
are source terms.

The term π
[k− 1

2
]

γ is given by

π
[k− 1

2
]

γ =
g2ǫ

2(k−1)
k h2k

Re

|∂k
x ρ|2
ρ2

, (5.20)

where g = ρT
1
2
(1−κ), h = 1/ρT

1
2
−κ so that π

[k− 1
2
]

γ will help to complete the missing gradient terms in

π
[k−1]
γ . The term Σ

[k− 1
2
]

γ is in the form

Σ
[k− 1

2
]

γ =
∑

σνµφ

ǫ2k−1
k

cσνµφ

Re
T σ−κ∂σ

Tφ Π(k)
ν Π(k+1)

µ

− κ+ 4
3η

Tκ

g2ǫ2k−1
k

h2k+1

Re

ǫm∂
k
x (∂x·v)√
T

∂k
x ρ

ρ
, (5.21)

where the sums are over φ ∈ { λ, η, κ }, 0 ≤ σ ≤ k, ν = (να, ν
′
α, ν

′′
α)1≤|α|≤k, µ = (µα, µ

′
α, µ

′′
α)1≤|α|≤k+1,

να, ν
′
α, ν

′′
α, µα, µ

′
α, µ

′′
α ∈ N, α ∈ N

n. The products Π
(k)
ν and Π

(k+1)
µ are defined as in the governing

equation for γ[k] and Π
(k+1)
µ is always split between several derivative factors. Furthermore the term

ω
[k− 1

2
]

γ is given by

ω
[k− 1

2
]

γ =
ǫ
2(k−1)
k

Re

(∑

νµ

cνµΠ(k)
ν Π(k)

µ + g2h2k ∂
k
x T

T

∂k
x ρ

ρ
− g2h2kǫ2

m

|∂k−1
x (∂x·v)|2

T

)
, (5.22)

and one of the products Π
(k)
ν or Π

(k)
µ is always split between several derivative factors.

5.3 A priori estimates

Integrating the balance equation (5.14) for γ[k] and taking into account the smoothness properties with
1 ≤ k ≤ l, we obtain that

∂t

∫

Rn

γ[k] dx+

∫

Rn

π[k]
γ dx ≤

∫

Rn

|Σ[k]
γ | dx+

∫

Rn

|ω[k]
γ | dx, (5.23)

so that we have to estimate the integrals
∫

Rn|Σ[k]
γ | dx and

∫
Rn|ω[k]

γ | dx. Similarly, we obtain by integrating

the balance equation (5.19) for γ[k− 1
2
] that

∂t

∫

Rn

γ[k− 1
2
] dx+

∫

Rn

π
[k− 1

2
]

γ dx ≤
∫

Rn

|Σ[k− 1
2
]

γ | dx+

∫

Rn

|ω[k− 1
2
]

γ | dx, (5.24)

and we also have to estimate the integrals
∫

Rn|Σ[k− 1
2
]

γ | dx and
∫

Rn|ω[k− 1
2
]

γ | dx. Similar estimates can be

conducted for the corresponding integrals
∫

Rn|Σ[k]
γ̃ | dx,

∫
Rn|ω[k]

γ̃ | dx,
∫

Rn|Σ[k− 1
2
]

γ̃ | dx, and
∫

Rn|ω[k− 1
2
]

γ̃ | dx
associated with the modified correctors but are omitted for brevity. We denote by χ the quantity

χ = ‖ log ρ‖BMO + ǫm‖
v√
T
‖L∞ + ‖ logT ‖BMO

+ ǫk‖h
∂xρ

ρ
‖L∞ + ǫkǫm‖h

∂xv√
T
‖L∞ + ǫk‖h

∂xT

T
‖L∞ + ǫ2

k
‖h2 ∂

2
xT

T
‖L∞ , (5.25)
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and we will establish entropic type inequalities when χ is small enough. We could as well use the
quantity

χ̃ = ‖r‖BMO + ǫm‖w‖L∞ + ‖τ‖BMO

+ ǫk‖h∂xr‖L∞ + ǫkǫm‖h∂xw‖L∞ + ǫk‖h∂xτ‖L∞ + ǫ2
k
‖h2∂2

x τ‖L∞ , (5.26)

but χ ≤ χ̃(1 + χ̃) and χ̃ ≤ χ(1 + χ) so that χ and χ̃ are asymptotically equivalent in the neiborghood
of zero. These quantities χ and χ̃ are invariant under the change of scales (5.6) described in Remark
5.1. They can also be interpreted as involving the natural variables log ρ, logT , and v/

√
rgT appearing

in Maxwellian distributions [4] and the natural scale h associated with the mean free path. Since we
have formally v/

√
rgT = O(ǫm), log(T/T∞) = O(ǫm), and log(ρ/ρ∞) = O(ǫm), the constraint that χ

and χ̃ remain small may also be interpreted as a small Mach number constraint, which is consistent
with Enskog expansion [16]. In the following, all constants associated with a priori estimates and
entropic inequalities may depend on the system parameters a, a, aσ, σ ≥ 1, κ, and cv. However, these
dependencies are made implicit in order to avoid notational complexities and only the dependence on
k and n is made explicit.

Proposition 5.5 Let (ρ, v, T ) be a smooth solution of the compressible Navier-Stokes equations (5.1)–
(5.3) with regularity (5.4)(5.5) and let 1 ≤ k ≤ l. There exist positive constants δ(k, n) and ck =
c(k, n)—independent of ǫk and ǫm—such that for χ < δ we have

∫

Rn

|Σ[k]
γ | dx ≤ ck χ

∫

Rn

(
π[k]

γ + π
[k− 1

2
]

γ + π[k−1]
γ + 1k≥2(π

[k− 3
2
]

γ + π[k−2]
γ )

)
dx, (5.27)

∫

Rn

|ω[k]
γ | dx ≤ ck χ

∫

Rn

(
π[k]

γ + π
[k− 1

2
]

γ + π[k−1]
γ + 1k≥2(π

[k− 3
2
]

γ + π[k−2]
γ )

)
dx. (5.28)

Proof. In the expression (5.16) for Σ
[k]
γ , the last term is directly majorized as

∫

Rn

λ

cvTκ

g2ǫ2k
k
h2(k+1)

Re

|∂k
x ρ|2
ρ2

|∆xT |
T

dx ≤ cǫ2
k
‖h2∂

2
xT

T
‖L∞

∫

Rn

π
[k− 1

2
]

γ dx,

thanks to the properties of transport coefficients. On the other hand, since the quantities T σ−κ∂σ
Tλ,

T σ−κ∂σ
Tκ and T σ−κ∂σ

T η are uniformly bounded from assumptions (3.12) we only have to estimate the

L2 norm of the products Π
(k+1)
ν and Π

(k+1)
µ in order to majorize the terms in the sum of (5.16). When

Π
(k+1)
ν only contains derivatives of v and T—in particular if there is a derivative of order k + 1—we

obtain from Theorem 4.3 applied to (v, T ) with k replaced by k + 1, that when χ is small enough

ǫk
k√
Re

‖Π(k+1)
ν ‖L2 ≤ c

(
‖ logT ‖BMO + ǫm‖

v√
T
‖L∞

)Nν−1
{∫

Rn

π[k]
γ dx

} 1
2

,

where Nν =
∑

1≤|α|≤k+1(να + ν′α + ν′′α) =
∑

1≤|α|≤k+1(ν
′
α + ν′′α). However, if the product Π

(k+1)
ν is

split—in particular if there is a derivative of density—we obtain from Theorem 4.4 applied to (ρ, v, T )
with k replaced by k + 1, that when χ is small enough

ǫk
k
‖Π(k+1)

ν ‖L2 ≤ c ‖w‖′Nν−2
BMO ǫk‖h∂xw‖′L∞ ǫk−1

k
‖ghk∂k

w‖′L2

+ c1k≥2‖w‖′ (Nν−3)+

BMO ǫ2
k
‖h∂xw‖′ 2L∞ ǫk−2

k
‖ghk−1∂k−1

w‖′L2,

keeping the notation of Theorem 4.4 for ‖w‖′BMO, ‖h∂xw‖′L∞ and ‖ghm∂m
w‖′

L2. Therefore, we obtain

that

ǫk
k√
Re

‖Π(k+1)
ν ‖L2 ≤ c χNν−1

{∫

Rn

(
π

[k− 1
2
]

γ + π[k−1]
γ + 1k≥2(π

[k− 3
2
]

γ + π[k−2]
γ )

)
dx

} 1
2

,

where Nν =
∑

1≤|α|≤k+1(να + ν′α + ν′′α), using ‖w‖′BMO ≤ χ, ǫk‖h∂xw‖′L∞ ≤ χ, χ ≤ 1, and

ǫ
2(i−1)
k

Re
‖ghi∂i

w‖′2L2 ≤ c

∫

Rn

(π
[i− 1

2
]

γ + π[i−1]
γ ) dx.

12



Combining these estimates, we obtain for χ small enough

ǫ2k
k

Re
‖Π(k+1)

ν Π(k+1)
µ ‖L1 ≤ c χ

∫

Rn

(
π[k]

γ + π
[k− 1

2
]

γ + π[k−1]
γ + 1k≥2(π

[k− 3
2
]

γ + π[k−2]
γ )

)
dx,

since at least one of the products Π
(k+1)
ν or Π

(k+1)
µ is split into two or more derivative factors so that

Nν + Nµ − 2 ≥ 1. The same type of estimates can be obtained for the convective contributions ω
[k]
γ

since the corresponding products Π
(k+1)
µ are always split between several derivative factors. ⊓⊔

Proposition 5.6 Let (ρ, v, T ) be a smooth solution of the compressible Navier-Stokes equations (5.1)–
(5.3) with regularity (5.4)(5.5) and let 1 ≤ k ≤ l. There exist positive constants δ(k, n) and ck =
c(k, n)—independent of ǫk and ǫm—such that for χ < δ we have

∫

Rn

|Σ[k− 1
2
]

γ | dx ≤ck χ
∫

Rn

(
π[k]

γ + π
[k− 1

2
]

γ + π[k−1]
γ + 1k≥2(π

[k− 3
2
]

γ + π[k−2]
γ )

)
dx

+ c0

{∫

Rn

π[k]
γ dx

} 1
2

{∫

Rn

π
[k− 1

2
]

γ dx

} 1
2

, (5.29)

∫

Rn

|ω[k− 1
2
]

γ | dx ≤ck χ
∫

Rn

(
π[k]

γ + π
[k− 1

2
]

γ + π[k−1]
γ + 1k≥2(π

[k− 3
2
]

γ + π[k−2]
γ )

)
dx

+ c
′
0

∫

Rn

π[k−1]
γ dx+ c

′
0

{∫

Rn

π
[k− 1

2
]

γ dx

} 1
2

{∫

Rn

π[k−1]
γ dx

} 1
2

, (5.30)

where c0 and c
′
0 are constants independent of k, n, ǫk and ǫm.

Proof. All split terms of Σ
[k− 1

2
]

γ or ω
[k− 1

2
]

γ are estimated as in the proof of the proposition 5.5 whereas

the special terms are directly estimated in terms of π
[k]
γ , π

[k− 1
2
]

γ and π
[k−1]
γ with constants independent

of k, n, ǫk and ǫm. ⊓⊔

5.4 Zeroth order estimates

The balance equation for

γ[0]/C0 = ρ log
( ρ

ρ∞

)
−

(
ρ− ρ∞

)
+ ǫ2

m

1
2ρ

v2

T∞
+ ρcv

(T − T∞
T∞

− log
( T

T∞

))
. (5.31)

can be written—after some algebra—in the form

∂t

γ[0]

C0
+ ∂x·

(
ρv

(
s∞ − s+ cp

T − T∞
T∞

+ 1
2ǫ

2
m

|v|2
T∞

))
+

1

Re
∂x·

( q

T∞
− q

T
+ ǫ2

m

Π ·v
T

)

+
1

Re

(λ|∂xT |2
T 2

+ ǫ2
m

η|d|2
2T

+ ǫ2
m

κ(∂x·v)2
T

)
dx = 0. (5.32)

Proposition 5.7 Let γ[0] be given by (5.31). Then γ[0] ≥ 0 and there exists positive constants C0 and
δ0 > 0—independent of ǫk and ǫm—such that for χ < δ0 small enough

∂t

∫

Rn

γ[0] dx+

∫

Rn

π[0]
γ dx ≤ 0, (5.33)

where we define from (5.15)

π[0]
γ =

2g2h2

Re

( λ

Tκ

|∂1
xT |2
T 2

+ ǫ2
m

η

Tκ

|∂1
x v|2
T

+ ǫ2
m

1
3η + κ

Tκ

(∂x·v)2
T

)
.

Proof. The proof is similar to that of the unscaled case [14] and 5.33 is a direct consequence of 5.32.
⊓⊔
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5.5 Higher order estimates

We have defined the (2k)th order Boltzmann kinetic entropy estimators by Γ[k] = γ[0] + · · · + γ[k] +

a(γ[ 1
2
] + · · · + γ[k− 1

2
]) and Γ̃[k] = γ̃[0] + · · · + γ̃[k] + a(γ̃[ 1

2
] + · · · + γ̃[k− 1

2
]), for k ≥ 0, so that

Γ[k] = γ[0] +
∑

1≤l≤k

ρǫ2l
k
h2l

( |∂l
xρ|2
ρ2

+ ǫ2
m

|∂l
xv|2
T

+ cv
|∂l

xT |2
T 2

)

+
∑

1≤l≤k

aρǫ2l−1
k

h2l−1ǫm
∂l−1
x v√
T

·∂
l−1
x ∂xρ

ρ
, (5.34)

Γ̃[k] = γ̃[0] +
∑

1≤l≤k

ρǫ2l
k
h2l

(
|∂l

xr|2 + ǫ2
m
|∂l

xw|2 + cv|∂l
xτ |2

)

+
∑

1≤l≤k

ρǫ2l−1
k

h2l−1ǫm ∂
l−1
x w·∂l−1

x ∂xr, (5.35)

and we have to establish that these kinetic entropy estimators obey entropic principles for the solutions
of the compressible fluid model (5.1)–(5.3).

Lemma 5.8 Let (ρ, v, T ) be a smooth solution of the compressible Navier-Stokes equations (5.1)–(5.3)
with regularity (5.4)(5.5), assume that T ≥ Tmin. There exists B0(

Tmin

T
∞

) such that for C0 ≥ B0,

0 < a ≤ 1, and 0 ≤ k ≤ l

1
2 (γ[0] + · · · + γ[k]) ≤ Γ[k] ≤ 3

2 (γ[0] + · · · + γ[k]), 0 ≤ k ≤ l, (5.36)

1
2 (γ̃[0] + · · · + γ̃[k]) ≤ Γ̃[k] ≤ 3

2 (γ̃[0] + · · · + γ̃[k]), 0 ≤ k ≤ l. (5.37)

Moreover, assuming that T ≥ Tmin and ρ ≤ ρmax, there exists exists B0(
Tmin

T
∞

, ρmax

ρ
∞

) such that for

C0 ≥ B0,
ρ
(
|r − r∞|2 + ǫ2

m
|w|2 + cv|τ − τ∞|2

)
≤ γ[0]. (5.38)

Proof. Using the Cauchy-Schwartz inequality, it is straightforward to check that for any 1 ≤ i ≤ k ≤ l

|γ[i− 1
2
]| ≤

{
ρǫ

2(i−1)
k h2(i−1)ǫ2

m

∣∣∂
i−1v√
T

∣∣2
} 1

2
{
ρǫ2i

k
h2i

∣∣∂
iρ

ρ

∣∣2
} 1

2

≤1

2

(
ρǫ

2(i−1)
k h2(i−1)ǫ2

m

∣∣∂
i−1v√
T

∣∣2 + ρǫ2i
k
h2i

∣∣∂
iρ

ρ

∣∣2
)
.

Therefore, half of the density part of γ[i] and half of the velocity part of γ[i−1] compensate for |γ[i− 1
2
]|

provided we ensure that γ[0] ≥ ρǫ2
m
|v/

√
T |2 but this is a consequence of C0 ≥ 2T∞/Tmin. The same

method also applies for the modified estimators γ̃[i− 1
2
], 1 ≤ i ≤ k, and this yields Inequalities (5.36)

and (5.37) upon summing over 1 ≤ i ≤ k. Inequality (5.38) is a consequence of

Tmin

2T∞
ǫ2
m
|w|2 ≤ ǫ2

m

|v|2
2T∞

,

Tmin

2T∞
|τ − τ∞|2 ≤ exp(τ − τ∞) − 1 − (τ − τ∞),

valid for τmin ≤ τ , where τmin = logTmin, τ∞ = logT∞ and Tmin ≤ T∞, and of

ρ∞
2ρmax

|r − r∞|2 ≤ exp(r∞ − r) − 1 − (r∞ − r),

valid for r ≤ rmax, where rmax = log ρmax, r∞ = log ρ∞ and r∞ ≤ rmax letting B0 = max(1,
2T

∞

Tmin
, ρmax

2ρ
∞

)

and C0 ≥ B0. ⊓⊔

We can now combine the estimates of Propositions 5.5, 5.6, and 5.7, and the differential inequalities
(5.23) and (5.24) in order to obtain entropic estimates.
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Theorem 5.9 Let (ρ, v, T ) be a smooth solution of the compressible Navier-Stokes equations (5.1)–
(5.3) with regularity (5.4)(5.5) and let 1 ≤ k ≤ l. There exists positive constants b, ā, and δ(k, n) such
that for the fixed value a = ā and χ < δ we have the estimates

∂t

∫

Rn

Γ[k] dx+
b

ǫ2
k
Re

∫

Rn

ρT 1−κ(γ[1] + · · · + γ[k]) dx ≤ 0, (5.39)

with similar results for the modified higher order entropies

∂t

∫

Rn

Γ̃[k] dx+
b

ǫ2
k
Re

∫

Rn

ρT 1−κ(γ̃[1] + · · · + γ̃[k]) dx ≤ 0. (5.40)

Proof. The inequality (5.39) is a consequence of

∂t

∫

Rn

Γ[k] dx+
1

5

∫

Rn

(
π[0]

γ + · · · + π[k]
γ + a(π

[ 1
2
]

γ + · · ·π[k− 1
2
]

γ )
)
dx ≤ 0, (5.41)

valid for a small enough and χ/a small enough. This inequality (5.41) is established from the estimates
of Propositions 5.5, and 5.7. The proof is similar to that of the unscaled case [14] since the estimating
constants have been shown to be independent of ǫk and ǫm, and the proof of (5.40) is similar. ⊓⊔

By integrating these differential inequalities, be obtain in particular that
∫

Rn

Γ[k] dx +
b

ǫ2
k
Re

∫ t

0

∫

Rn

ρT 1−κ(γ[1] + · · · + γ[k]) dxdt ≤
∫

Rn

Γ
[k]
0 dx, (5.42)

where the subscript 0 indicates that the functionals are estimated at the initial time t = 0, with similar
results for the modified entropies.

∫

Rn

Γ̃[k] dx +
b

ǫ2
k
Re

∫ t

0

∫

Rn

ρT 1−κ(γ̃[1] + · · · + γ̃[k]) dxdt ≤
∫

Rn

Γ̃
[k]
0 dx. (5.43)

One can also obtain the following exponential estimates of higher order entropy estimators.

Corollary 5.10 Keep the assumptions of Theorem 5.9, assume that T ≥ Tmin, ρmin ≤ ρ ≤ ρmax,
0 ≤ κ ≤ 1, and that C0 ≥ B0(

Tmin

T
∞

, ρmax

ρ
∞

) as in Lemma 5.8. Then we have estimates in the form
∫

Rn

Γ[k] dx ≤ exp(−at)

∫

Rn

Γ
[k]
0 dx+ 2

(
1 − exp(−at)

) ∫

Rn

γ
[0]
0 dx,

∫

Rn

Γ̃[k] dx ≤ exp(−at)

∫

Rn

Γ̃
[k]
0 dx+ 2

(
1 − exp(−at)

) ∫

Rn

γ̃
[0]
0 dx.

where a = bρminT
1−κ

min /2ǫ2
k
Re.

Proof. This results from the differential inequality

∂t

∫

Rn

Γ[k] dx+ 2 a

∫

Rn

(γ[0] + γ[1] + · · · + γ[k]) dx ≤ 2 a

∫

Rn

γ
[0]
0 dx, (5.44)

and from Inequality 5.36 upon time integration. The proof for the modified entropy estimators is
similar. ⊓⊔

Theorem 5.9 shows that the (2k)th order kinetic entropy estimators Γ[k] and Γ̃[k] effectively obey
entropic principles. Upon integrating inequalities (5.39) or (5.40), a priori estimates are obtained for
the solutions of the compressible Navier-Stokes equations. These entropic inequalities and the related a
priori estimates are invariant—up to a multiplicative factor—by the change of scales (5.6) described in
Remark 5.1 and naturally associated to the Navier-Stokes equations. Since we have formally v/

√
rgT =

O(ǫm), log(T/T∞) = O(ǫm), and log(ρ/ρ∞) = O(ǫm), the constraint that χ or χ̃ remain small may be
interpreted as a small Mach number constraint, which is consistent with Enskog expansion [16]. These
estimates also provide a thermodynamic interpretation of the corresponding weighted Sobolev norms
involving renormalized variables as well the dependence on density and temperature of the local mean
free path through the factor h which ensures that the operator h∂x is scale invariant.

Remark 5.11 In the special situation κ = 1/2 the weight h does not depend anymore on temperature
and consequently the control over second order derivatives of temperature is not neede in χ or χ̃. A
value κ = 1/2 corresponds to an infinite interaction potential at small interparticle distances.
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5.6 Sobolev norms in molecular coordinates

Higher order entropic inequalities yield a priori estimates as soon as the quantity χ is small enough. It
is possible to rewrite χ in terms of the molecular coordinates (t̄, x̄) introduced in Section 3.5

χ =‖ logT ‖BMO + ‖ log ρ‖BMO + ‖v/
√
T‖L∞

+ ‖h∂x̄ logT ‖L∞ + ‖h∂x̄ log ρ‖L∞ + ‖h∂x̄v/
√
T‖L∞ + ‖h2∂2

x̄ logT ‖L∞,

in such a way that the reduced velocity v, the variations of log ρ and logT , and their derivatives in
molecular coordinates have to be small.

Higher order entropic inequalities (5.40) directly yield estimates for r, w = ǫmv/
√
T , and τ = logT ,

through the integrals

∫

Rn

(
γ̃[0] +

∑

1≤l≤k

ρǫ2l
k
h2l(|∂l

xr|2 + |∂l
xw|2 + cv|∂l

xτ |2)
)
dx, (5.45)

that can be written similarly in terms of molecular coordinates. In particular, when C0 ≥ B0(
Tmin

T
∞

, ρmax

ρ
∞

)

as in Lemma 5.8, we have

∑

0≤l≤k

ρh2l
(
|∂l

x̄(r − r∞)|2 + |∂l
x̄w|2 + cv|∂l

x̄(τ − τ∞)|2
)
≤ 2Γ̃[k], (5.46)

so that ǫ−n
k

∫
RnΓ̃

[k] dx =
∫

RnΓ̃
[k] dx̄ essentially represents a Sobolev norm of w−w∞ = (r−r∞, w, τ−τ∞)

in weighted molecular coordinates x̄ which take into account the local change in the mean free path
l = <l>h due to the variations of density and temperature.

Remark 5.12 The weight h can be minorized independently of the maximum tempererature only when
κ ≥ 1/2 as given by the kinetic theory of gases.

Remark 5.13 It is also possible to investigate a priori estimates of entropic correctors integrals∫
Rnγ

[k] dx in terms of powers of the knudsen numbers O(ǫ2k+2
k

).
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