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Abstract

Higher order entropies are kinetic entropy estimators for fluid models. These quantities are

quadratic in the velocity v and temperature T derivatives and have temperature dependent coeffi-

cients. We investigate asymptotic expansions of higher order entropies for incompressible flows in

terms of the Knudsen ǫk and Mach ǫm numbers. The correspoding entropic inequalities are obtained

when ‖ log T‖BMO + ǫm‖v/
√

T‖L∞ is small enough, provided that the temperature dependence of

the thermal conductivity λ and the viscosity η is that given by the kinetic theory. As an example

of application of higher order entropic estimates we establish an existence theorem for small Mach

number flows.

Introduction

The notion of entropy has been shown to be of fundamental importance in fluid modeling from both a
physical and mathematical point of view [1, 2, 5, 6, 7, 9, 14, 16, 18, 22]. We have introduced in a previous
work [10, 11] a notion of kinetic entropy estimators for fluid models, suggested by Enskog expansion
of kinetic entropy. Conditional entropic inequalities have been established for these quantities in the
situation of incompressible flows spanning the whole space.

In this paper, we further investigate asymptotic expansions of these higher order entropies and we
study the corresponding conditional entropic inequalities when the Mach number ǫm and the Knudsen
number ǫk are small. In contrast, although higher order entropies are suggested by Enskog expansion,
only fluid systems with coefficients of order unity were considered in previous work.

In Section 1 we first summarize the mathematical and physical motivations for higher order entropies
which are kinetic entropy estimators for fluid models. The corresponding balance equations may be
seen as a generalization of Bernstein equation to systems of partial differential equations associated
with renormalized variables [11].

We introduce in Section 2 the natural rescaled variables and small parameters associated with
fluid models, in particular the Mach number ǫm and the Knudsen number ǫk. Thanks to the rescaled
variables, the governing equations and the higher order entropies are rewriten in terms of ǫm and ǫk.
We also introduce the molecular coordinates—associated with the particle collision time and the mean
free path—which are such that all small parameters are eliminated from the corresponding system of
partial differential equations.

In Section 3 we summarize some weighted inequalities in Sobolev and Lebesgue spaces [11]. These
inequalities are required since we are using renormalized variables with powers of temperature as weights
and since we also consider flows with temperature dependent thermal conductivity and viscosity. We
further discuss how the various inequalities are transformed by a change of scale in the coordinate
system.

We investigate in Section 4 higher order entropies when the natural small parameters of fluid models
are taken into account in the governing equations. The corresponding entropic estimates are obtained
when the quantity χ = ‖ log T ‖BMO + ǫm‖v/

√
T‖L∞ is small enough, provided that the temperature

dependence of thermal conductivity and viscosity is that given by the kinetic theory, that is, essentially
in the form of a power law of temperature T κ with κ ≥ 1/2. Note that the quantity χ is small when
the Mach number is small since we formally have χ = O(ǫm) and χ is also scaling invariant. In the
situation of logarithmic scaling the kinetic entropy estimators are also shown to be closely associated
with Sobolev norms of the fluid entropy in molecular coordinates.

In Section 5, as an example of application, we investigate an existence theorem in the limit of small
Knudsen ǫk and Mach ǫm numbers. For convenience we first consider the fluid equations written in
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molecular coordinates and strenghen an existence result previously obtained in [11]. We obtain in
particular a priori bounds on kinetic entropy correctors in the form of powers of the Knudsen number.
Upon restoring the macroscopic time and space scale we obtain a global existence theorem for small
Mach and Knudsen number flows.

1 Higher order entropies

In this section we briefly motivate the introduction of higher order entropies by discussing Bernstein
method and inspecting Enskog expansion of kinetic entropy [10, 11]

1.1 A thermodynamic interpretation of Bernstein equation

For parabolic—or elliptic—scalar equations, a priori gradient estimates can be obtained by using Bern-
stein method [17]. More specifically, consider—as a simple exemple—the heat equation

∂tu − ∆u = 0.

Defining ζ = |∂xu|2 = ∂xu·∂xu, we then have Bernstein equation

∂tζ − ∆ζ + 2|∂2
xu|2 = 0, (1)

where |∂2
xu|2 = ∂2

xu:∂2
xu =

∑
ij(∂iju)2. The structure of (1) then appears to be formally similar to

that of an entropy balance, where ζ plays the rôle of a generalized entropy, even though there also exist
zeroth order entropies like u2. In the next section, we introduce a kinetic framework supporting this
entropic interpretation.

1.2 Enskog second order expansion of kinetic entropy

The state of a monatomic gas is described by a particle distribution function f(t, x, c)—governed by
Boltzmann equation—where t denotes time, x the n-dimensional spatial coordinate, and c the particle
velocity [2, 5, 7, 9]. Approximate solutions of Boltzmann’s equation can be obtained from a first order
Enskog expansion f = f (0)

(
1 + εφ(1) + O(ε2)

)
where f (0) is the local Maxwellian distribution, φ(1)

the perturbation associated with the Navier-Stokes regime and ε the usual Enskog formal expansion
parameter. The compressible Navier-Stokes equations can then be obtained upon taking moments of
Boltzmann’s equation [3, 7, 9].

The kinetic entropy Skin = −kB

∫
Rnf

(
log f − 1

)
dc, where kB denotes Boltzmann constant, satisfies

the H theorem, that is, the second principle of thermodynamics. The expansion of Skin induced by a
second order Enskog expansion can be written

Skin = S(0) + ε2S(2) + O(ε3), (2)

where S(0) is the usual zeroth order macroscopic entropy evaluated from the Maxwellian distribution
f (0) and S(2) = −kB/2

∫
Rn(φ(1))2f (0)dc. For compressible monatomic gases one can establish that [11]

−ρS(2) = λ|∂xT |2 + 1
2η |d|2, (3)

where T denotes the absolute temperature, ρ the density, v the gas velocity, d = ∂xv+∂xvt− 2
n (∂x·v) I

the strain rate tensor and |d|2 =
∑

ij d2
ij , and where the scalar coefficients λ and η only depend on

temperature. In a first approximation, using a single term in orthogonal polynomial expansions of
perturbed distribution functions, one can establish that λ = (1/2rcp)λ

2/T 3 and η = (1/2r)η2/T 2

where cp is the constant pressure specific heat per unit mass, r the gas constant per unit mass, λ the
thermal conductivity, η the shear viscosity, and the actual values of the numerical factors in front of λ
and η are evaluated here for n = 3.

1.3 Enskog higher order expansion of kinetic entropy

More generally, higher order Enskog expansions f/f (0) = 1 + εφ(1) + · · · + ǫ2kφ(2k) + O(ε2k+1) induce
higher order expansions for Skin

Skin − S(0) = ε2S(2) + ε3S(3) + · · · + ε2kS(2k) + O(ε2k+1), (4)
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where S(l) is a sum of terms in the form kB

∫
Rn

∏
1≤i≤l

(
φ(i)

)νi
f (0) dc with nonnegative integers νi ≥ 0,

1 ≤ i ≤ l, such that l =
∑

1≤i≤l iνi. From the general expression of φ(l) in the absence of external
forces acting on the particles, one can establish that

S(2k) = ρr
( η

ρ
√

rT

)2k ∑

ν

cν

∏

1≤|α|≤2k

(∂α
x T

T

)να
(∂α

x ρ

ρ

)ν′

α
( ∂α

x v√
rT

)ν′′

α

, (5)

where να, ν′
α, ν′′

α ∈ N, α ∈ N
n, and ν = (να, ν′

α, ν′′
α)1≤|α|≤2k must be such that

∑
1≤|α|≤2k |α|(να + ν′

α +

ν′′
α) = 2k and where the coefficients cν are smooth scalar functions of log T of order unity.

After integrations by parts in the integral
∫

RnS
(2k) dx, in order to eliminate spatial derivatives of

order strictly greater than k, and by using interpolation inequalities, one obtains that |
∫

RnS
(2k) dx| is

essentially controled by the integral of

γ[k] = rρ
( η

ρ
√

rT

)2k
(∣∣∂

k
xT

T

∣∣2 +
∣∣∂

k
xρ

ρ

∣∣2 +
∣∣ ∂k

xv√
rT

∣∣2
)
, (6)

or equivalently of

γ̃[k] = rρ
( η

ρ
√

rT

)2k (
|∂k

x log T |2 + |∂k
x log ρ|2 + |∂k

x(v/
√

rT )|2
)
, (7)

and |
∫

RnS
(2k−1) dx| is also controled by

∫
Rnγ

[k] dx and
∫

Rnγ
[k−1] dx. This suggests the quantities γ[k] or

γ̃[k] as (2k)th order kinetic entropy correctors—or kinetic entropy deviation estimators [11]. Note that,
at variance with S(2), it is not clear that S(2k) has a sign, and this is a motivation for using γ[k] and γ̃[k]

rather than S(2k), beyond simplicity. We are therefore looking for majorizing entropic correctors, and
the fact that entropic inequalities can be obtained for such correctors is a consequence of the structure
of the fluid equations. A similar analysis can also be conducted for the Fisher information and suggests
the same quantities γ[k] or γ̃[k] as higher order kinetic information correctors.

Remark 1.1. Since the kinetic entropy correctors γ[k] or γ̃[k] are only majorizing correctors, we are free
to modify these quantities for convenience. These estimators generally have to be adapted to the math-
ematical structure of the fluid equations under consideration. In particular, for hyperbolic-parabolic
systems of partial differential equations, perturbations are needed for hyperbolic variables [12]. These
correctors may also be rescaled by mutiplicative constants depending on k [11, 12]. The temperature
dependence of higher order entropy estimators may also be simplified when the temperature dependence
of transport coefficient is simplified.

1.4 Persistence of kinetic entropy versus extended fluid models

Denoting by γ[0] a nonnegative quantity associated with the zeroth order entropy S(0), we will in-
vestigate entropicity properties of kinetic entropy estimators in the form Γ[l] = γ[0] + · · · + γ[l], with
0 ≤ l ≤ k, for the solutions of a second order system of partial differential equations modeling a fluid.
For this fluid system, the zeroth order entropy S(0) is already of fundamental importance as imposed
by the hyperbolic-parabolic structure of these equations [16, 13, 9]. We only consider the quantities
γ[0] + · · · + γ[l], 0 ≤ l ≤ k, as a family of mathematical entropy estimators—of kinetic origin—and we
will establish that they indeed satisfy conditional entropic principles for solutions of Navier-Stokes type
equations. Higher order entropic estimates may also be seen as a generalization of Bernstein method
for systems of partial differential equations but involving renormalized variables.

This point of view differs from that of thermodynamic theories that have already considered en-
tropies differing from that of zeroth order, that is, entropies depending on macroscopic variable gradi-
ents. These generalized entropies have been associated notably with Burnett type equations or extended
thermodynamics. In both situations, new macroscopic equations are correspondingly obtained, that
is, ‘extended fluid models’, which are systems of partial differential equations of higher orders than
Navier-Stokes type equations.

2 Nondimensionalization

We introduce in this section the rescaled fluid variables, the rescaled fluid equations, and the natural
small parameters needed to investigate asymptotic expansions of higher order entropies.
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2.1 Rescaled variables

In order to investigate asymptotic expansions of higher order entropies, we need to specify the order
of magnitude of the various terms appearing in fluid governing equations. To this purpose, for each
quantity φ, we introduce a typical order of magnitude denoted by <φ>. In particular, we introduce a
characteristic length <x>, velocity <v>, density <ρ>, viscosity <η>, and pressure <p>. The order
of magnitude of the sound velocity c is then <c>2 = <p>/<ρ> and from the state law we also have
<c>2 = <r><T > where r denotes the gas constant per unit mass and T the absolute temperature,
and the Reynolds number is given by

Re =
<ρ><v><x>

<η>
. (8)

An important aerodynamic length upon consideration is the dissipation length <x>dis defined such
that the corresponding Reynolds number is unity <x>dis = <η>/<ρ><v> and we can then write
Re = <x>/<x>dis. We define the characteristic time from the characteristic length <x> and the
characteristic velocity <v> by letting <t> = <x>/<v>.

We also introduce a typical mean free path <l> and from kinetic theory <η> = <ρ><c><l>
[7]. Denoting by ǫk the Knudsen number <l>/<x> and ǫm the Mach number <v>/<c> we then
have the Von Karman relation

ǫm =
<v>

<c>
=

<l>

<x>
Re = ǫkRe, (9)

which relates ǫk and ǫm. We will assume in the following that the Knudsen number ǫk is small and the
Mach number ǫm will also be small, since we are especially interested in flows where the characteristic
length <x> is the dissipative length <x>dis and the Reynolds number is then unity.

Upon defining the reduced quantity φ̂ = φ/<φ> associated with each quantity φ of the fluid model,
we can now estimate the order of magnitude of each term in the governing partial differential equations
and in the definition of higher order entropies. We will assume, for the sake of simplicity, that we have
r̂ = 1 so that ĉ 2 = T̂ in particular.

2.2 Rescaled governing equations

We will only consider incompressible flows spanning the whole space that are ‘constant at infinity’.
The case of compressible flows [12] or zero Mach number flows as well as other boundary conditions are
beyond the scope of the present paper. The equations governing incompressible flows can be written
in the form [18]

∂x·v = 0, (10)

∂t(ρv) + ∂x·(ρv⊗v) + ∂xp + ∂x·Π = 0, (11)

∂t(ρe) + ∂x·(ρev) + ∂x·Q = −Π :∂xv, (12)

where t is time, x the n-dimensional spatial coordinate, ρ the mass density, v the velocity vector, p the
pressure, Π the viscous tensor, e the internal energy per unit mass, and Q the heat flux. The viscous
tensor is given by Π = −ηd where η is the shear viscosity and d the strain rate tensor d = ∂xv + ∂xvt,
and the heat flux is given by Q = −λ∂xT where λ is the thermal conductivity. For the sake of simplicity
the internal energy per unit mass e is taken in the form e = cvT where cv is a constant.

Upon using the general notation of Section 2.1 and letting ρ̂ = 1 thanks to incompressibility the
reduced equations can then be written

∂x̂ · v̂ = 0, (13)

∂
t̂
v̂ + ∂x̂ ·(v̂⊗v̂) + 1

ǫ2
m

∂x̂ p̂ + 1
Re∂x̂ ·Π̂ = 0, (14)

∂
t̂
ê + ∂x̂ ·(v̂ê) + 1

Re∂x̂ ·Q̂ = − ǫ2
m

Re Π̂ :∂x̂ v̂. (15)

Note that, in contrast with the rescaled system (13)–(15), all systems of partial differential equations
previously considered in [10, 11] did not contain any small parameter. By defining p̂2 = (p̂ − p̂0)/ǫ2

m

we may also replace 1
ǫ2
m

∂x̂ p̂ by ∂x̂ p̂2 in the momentum governing equation (14).
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2.3 Rescaled higher order entropies

Specializing formally the expression (6) for γ[k] to the situation of incompressible flows the derivatives
with respect to the mass density ρ vanish. Further letting <γ[k] > = <ρr> = <ρ><r> we deduce
after some algebra, using r̂ = 1 and ρ̂ = 1, that the rescaled higher order entropy correctors γ̂[k] =
γ[k]/<ρ><r> are given by

γ̂[k] = ǫ2k
k

( η̂√
T̂

)2k{∣∣∂
k
x̂ T̂

T̂

∣∣2 + ǫ2
m

∣∣ ∂
k
x̂ v̂√
T̂

∣∣2
}
, (16)

and we have recovered that the (2k)th order entropy correctors are formally of order O(ǫ2k
k

) as was
expected from their construction in Section 1.

At zeroth order, we will use for convenience the modified entropy ρ(e−e∞+ 1
2v·v)/T∞−(S(0)−S

(0)
∞ )

so that we obtain after rescaling

γ̂[0] =
( ê − ê∞

T̂∞

− (ŝ − ŝ∞)
)

+ ǫ2
m

v̂2

2T̂∞

. (17)

The rescaled kinetic entropy estimators Γ̂[k] are finally given by Γ̂[k] = γ̂[0] + · · · + γ̂[k] and similar
definitions can be introduced with respect to the higher order entropies γ̃[k] (7).

2.4 Molecular coordinates

The proper framework required to investigate asymptotic expansions of higher order entropies involve
the rescaled coordinates (t̂, x̂), the rescaled unknowns (v̂, T̂ ), and the rescaled governing equations
(13)–(15) depending on the small parameters ǫk and ǫm. In this framework, parameter dependent a
priori estimates and entropic inequalities can directly be obtained from the rescaled fluid governing
equations.

On the other hand, it is also possible to completely eliminate the parameters ǫk and ǫm from the
governing equations and from higher order entropy expansions by using a set of coordinates associated
with the molecular properties of the fluid. More specifically, let us introduce the new coordinates

x̄ =
x̂

ǫk
, t̄ =

t̂

ǫkǫm
, (18)

associated with the characteristic length ǫk<x> = <l> and the characteristic time ǫkǫm<t> =
<l>/<c> so that x̄ is measured in units of the mean free path <l> and t̄ in units of the particle

collision time <l>/<c>. We then have ∂α
x̄ = ǫ

|α|
k ∂α

x and ∂σ
t̄ = (ǫkǫm)σ∂σ

t for any multiindex α ∈ N
n

and any σ ∈ N. By using these molecular coordinates (t̄, x̄), and upon defining the velocity v by

v = ǫm v̂ =
v

<c>
, (19)

we obtain after a little algebra the governing equations

∂x̄·v = 0, (20)

∂t̄v + ∂x̄·(v⊗v) + ∂x̄ p + 1
Re∂x̄·Π = 0, (21)

∂t̄e + ∂x̄·(ve) + 1
Re∂x̄·Q = − 1

ReΠ :∂x̄v, (22)

where Π = −ηd̄, d̄ = ∂x̄v + ∂x̄vt and Q = −λ∂x̄T . In these equations, with a slight abuse of
motation, we have denoted by the same letter the corresponding functions in physical x or molecular x̄
coordinates. It is then remarkable that all small parameters have been eliminated from the system (20)–
(22) so that we may use any result obtained in previous work [10, 11]. A second method to investigate
asymptotic expansions is therefore to use molecular coordinates and to map back these results to the
unknowns (v, T ) written in terms of the macroscopic coordinates (t̂, x̂). These two methods are of
course equivalent and both methods will be used in the following.

2.5 Temperature dependence of transport coefficients

Previous analyses have shown that it is necessary to take into account the temperature dependence of
transport coefficients [10, 11]. The kinetic theory of gases and the minimum principle for temperature
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lead to the following simplified assumptions concerning the temperature dependence of the thermal
conductivity λ(T ) and the shear viscosity η(T ). We assume that λ and η are C∞(0,∞) and such that
there exist κ, a > 0, a > 0, and aσ > 0 for any σ ≥ 1, with

a T κ ≤ λ/cv ≤ aT κ, aT κ ≤ η ≤ aT κ, T σ
(
|∂σ

T λ| + |∂σ
T η|

)
≤ aσ T κ. (23)

Kinetic theory suggests that 1/2 ≤ κ ≤ 1 but the situations where 0 ≤ κ < 1/2 or κ > 1 are still
interesting to investigate from a mathematical point of view. Under these simplifying assumptions, we
may accordingly simplify the temperature dependence of higher order kinetic correctors which can be
taken in the form

γ̂[k] = ǫ2k
k

1

T̂ k(1−2κ)

{∣∣∂
k
x̂ T̂

T̂

∣∣2 + ǫ2
m

∣∣ ∂
k
x̂ v̂√
T̂

∣∣2
}
, (24)

with similar simplifications for entropy correctors in the form (7).

3 Weighted inequalities

Higher order entropies naturally introduce weight factors in the form of powers of temperature when
estimating Lebesgue norms of the flow variables derivatives. Temperature weights also arise when in-
vestigating fluid models with temperature dependent transport coefficients. We restate here weighted
estimates of derivatives [11] and further investigate the scaling dependence of the corresponding esti-
mating constants.

3.1 The Muckenhoupt condition

A natural condition associated with weights has been shown to be the Muckenhoupt property Ap,
where 1 ≤ p ≤ ∞ [20, 8, 19].

Definition 3.1. Let g ∈ L1
loc(R

n) be positive and locally integrable and let 1 < p < ∞. We say that g
satisfies the Muckenhoupt condition Ap if

[g]Ap
= sup

Q

(
1

|Q|

∫

Q

g dx

)(
1

|Q|

∫

Q

g−
1

p−1 dx

)p−1

< ∞,

where the supremum is taken over all cubes.

For detailed studies about the Muckenhoupt property we refer to the book of Garcia-Cuerva and
Rubio de Francia [8]. We have in particular Ap ∩ Aq = Amin(p,q) and the weights of Ap have their
logarithms in BMO [8, 19]. A locally summable function f belongs to the space BMO(Rn) if

‖f‖BMO = sup
Q

1

|Q|

∫

Q

∣∣f(x) − f̄Q

∣∣ dx < ∞,

where the supremum is taken over all cubes Q and where f̄Q = 1/|Q|
∫

Q f(x) dx denotes the average of

f over Q [19]. The function space BMO has been introduced by John and Nirenberg [15] and naturally
arises when estimating the norms of the weighted operators T θRiT

−θ where Ri = (−∆)−1/2∂i, 1 ≤
i ≤ n, are Riesz transforms, or when using the Coifman and Meyer inequalities [20].

Theorem 3.2. There exists constants b(n) and B(n) such that for any θ ∈ R, any u ∈ BMO, and
any 1 < p < ∞, the condition

|θ|‖u‖BMO < 1
2b(n)min(1, p − 1),

implies that exp(θu) ∈ Ap and [
exp(θu)

]
Ap

≤
(
1 + B(n)

)p
.

Moreover, the constants b(n) and B(n) only depend on n and are thus invariant by a change of scale
in the coordinate system.

Proof. These estimates are proved in [11] and the scale invariance of b(n) and B(n) is straightforward
since both the BMO seminorm and the Ap condition number [g]Ap

are scale invariant. That is, if

u ∈ BMO and ũ(x) = u(ξx) where ξ > 0 is a rescaling factor, then ‖ũ‖BMO = ‖u‖BMO and similarly
[g]Ap

= [g̃]Ap
for any ξ > 0.
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We now investigate the continuity of Calderón-Zygmund operators in weighted Lebesgue spaces. In
the following theorem the quantitites c0, c1, c2 are the constants naturally associated with the norm
of a Calderón-Zygmund operator G [19].

Theorem 3.3. Let G be a Calderón-Zygmund operator, let 1 < p < ∞, and let g be a weight in Ap.
Then the operator G is bounded in Lp

(
gdx

)
, or equivalently, the operator g1/pGg−1/p is bounded in Lp,

with norm lower than C(c0, c1, c2, n, p, [g]Ap
), where c0, c1, c2 are the constants naturally associated

with the norm of G.

Proof. We refer to the books of Garcia-Cuerva and Rubio de Francia [8] and of Yves Meyer [19].

3.2 A multilinear estimate

We investigate weighted multilinear estimates, with weights in Ap, and we denote by A(Rn) the Wiener
algebra in R

n.

Theorem 3.4. Let k, l be positive integers, and αj, 1 ≤ j ≤ l, be multiindices such that |αj | ≥ 1,
1 ≤ j ≤ l, and k =

∑
1≤j≤l |αj |. Let 1 < p < ∞, g ∈ Ap, and u1, . . . , ul, be such that there exist

constants uj,∞ with uj − uj,∞ ∈ Hk(Rn)∩A(Rn), and such that g
1
p ∂k

xuj ∈ Lp, 1 ≤ j ≤ l. There exists
a constant c = c(k, n, p, [g]Ap

) only depending on k, n, p, and [g]Ap
, such that

∥∥g1/p
∏

1≤j≤l

∂αj

x uj

∥∥
Lp ≤ c

( ∑

1≤j≤l

‖uj‖BMO

)l−1( ∑

1≤j≤l

∥∥g1/p∂k
xuj

∥∥
Lp

)
, (25)

where we define
∥∥g1/p∂k

xv
∥∥p

Lp =
∑

|α|=k

k!

α!

∫

Rn

g
∣∣∂α

x v
∣∣p dx, (26)

using the multinomial coefficients k!/α! = k!/α1! · · ·αn! [4]. Moreover, the constant c is invariant by
a change of scale in the coordinate system.

Proof. The existence of the constant c = c(k, n, p, [g]Ap
) is established in [11] by using the Coifman-

Meyer multilinear theory [20] with Theorems 3.2 and 3.3. The scale invariance of the constant c is
easily established by a direct change of variable in (25) since the BMO norms are invariant and since
there is an equal number of derivatives k in each member.

Remark 3.5. The definition of ‖∂k
xv

∥∥p

Lp using the multinomial coefficients yields in particular for p = 2

‖∂k
xv‖2

L2 =
∑

|α|=k

k!

α!

∫

Rn

(
∂α

x v
)2

dx =
∑

1≤i1,...,ik≤n

‖∂i1 · · ·∂ik
v‖2

L2 ,

so that it is compatible with the classical definition |∂2
xv|2 =

∑
ij(∂i∂jv)

2 already used in Section 1.1.
This natural definition also simplifies the analytic form of higher order entropies governing equations.

Remark 3.6. The space of smooth functions with compact support D(Rn) is dense in Hk(Rn) ∩
BMO(Rn) if and only if k ≥ n/2. For k < n/2, D(Rn) is neither dense in Hk(Rn) ∩ L∞(Rn) nor in
Hk(Rn)∩BMO(Rn) and counterexemples are classically found in the form of series of needles. For k =
n/2, we have Hk(Rn)∩BMO(Rn) = Hk(Rn), whereas for k > n/2, Hk(Rn) is included in the Wiener
algebra A(Rn). We have introduced the natural simplifying assumption uj − uj,∞ ∈ Hk(Rn)∩A(Rn),
which is sufficient for our applications, since for k < n/2, D(Rn) is dense in Hk(Rn) ∩ A(Rn) and
A(Rn) ⊂ L∞(Rn) ⊂ BMO(Rn).

3.3 Weighted products of derivatives

We now estimate products of derivatives of temperature and velocity components rescaled by the proper
temperature factors.

Theorem 3.7. Let k ≥ 1 be an integer, θ̄ > 0 be positive , 1 < p < ∞, T be such that T ≥ Tmin > 0
and T − T∞ ∈ Hk(Rn) ∩ A(Rn) for some positive T∞. There exist positive constants δ(n, k, θ̄, p) and
c(n, k, p), only depending on (n, k, θ̄, p) and (n, k, p), respectively, such that if ‖ logT ‖BMO < δ, then
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for any real θ such that |θ| ≤ θ̄, any integer l ≥ 1, and any multiindices αj, 1 ≤ j ≤ l, with |αj | ≥ 1,
1 ≤ j ≤ l, and

∑
1≤j≤l |αj | = k, whenenver T θ/p(∂k

xT )/T ∈ Lp(Rn), we have the estimates

∥∥∥T
θ
p

∏

1≤j≤l

(∂αj

x T

T

)∥∥∥
Lp

≤ c
∥∥log T

∥∥l−1

BMO

∥∥T
θ
p
∂k

xT

T

∥∥
Lp . (27)

Further assuming v ∈ Hk(Rn)∩A(Rn), ‖ logT ‖BMO+‖v/
√

T‖L∞ < δ(n, k, θ̄, p), and T θ/p(∂k
xv)/

√
T ∈

Lp(Rn), we have for 0 ≤ l̄ ≤ l

∥∥∥T
θ
p

∏

1≤j≤l̄

(∂αj

x T

T

) ∏

l̄+1≤j≤l

(∂αj

x v√
T

)∥∥∥
Lp

≤ c
(∥∥log T

∥∥
BMO

+
∥∥ v√

T

∥∥
L∞

)l−1

×
(∥∥T

θ
p
∂k

xT

T

∥∥
Lp +

∥∥T
θ
p
∂k

xv√
T

∥∥
Lp

)
, (28)

where, in the left hand member, with a slight abuse of notation, we have denoted by v any of its
components v1, . . . , vn. Moreover, the constants δ(n, k, θ̄, p) and c(n, k, p), are independent of a change
of scale in the coordinate system.

Proof. A detailed proof of the existence of δ(n, k, θ̄, p) and c(n, k, p) is given in [11]. This proof essen-
tially consists in applying inequality (25) to τ = log T and w = v/

√
T and then estimating quantities

like ∥∥∥T
θ
p

(∏

1≤j≤l

(∂αj

x T

T

)
−

∏

1≤j≤l

∂αj

x τ
)∥∥∥

Lp
,

using again inequality (25). The scale invariance of δ(n, k, θ̄, p) and c(n, k, p) is a direct consequence
of the scaling properties of the BMO and Lebesgue norms.

4 Asymptotics of Higher order entropy estimates

We investigate in this section higher order entropy asymptotic estimates for incompressible flows. We
only investigate reduced unknowns and equations in this section and suppress hat accents from all
symbols for the sake of notational simplicity.

4.1 Rescaled governing equations

We investigate the solutions of an incompressible model in reduced form (13)–(15) rewritten by sup-
pressing hat accents

∂x·v = 0, (29)

∂tv + ∂x·(v⊗v) + 1
ǫ2
m

∂xp − 1
Re∂x·

(
η(T ) d

)
= 0, (30)

∂t(cvT ) + ∂x·(cvvT ) − 1
Re∂x·

(
λ(T ) ∂xT

)
=

ǫ2
m

2Reη(T )d:d, (31)

where v is the velocity, p the pressure, d = ∂xv + ∂xvt the strain rate tensor, η(T ) the viscosity, T
the absolute temperature and λ(T ) the thermal conductivity. All these quantities are dimensionless
and we have assumed for the sake of simplicity that the internal energy is proportional to temperature
e = cvT where cv is a constant. Note that, in comparison, all systems of partial differential equations
considered in [10, 11] did not contain any small parameter.

The relevant assumptions on the thermal conductivity λ and the shear viscosity η are derived from
the kinetic theory of gases and by using the minimum principle for temperature as discussed in Section
2.5 [7, 9, 11]. The reduced thermal conductivity and viscosity are C∞(0,∞) and such that there exist
κ, a > 0, a > 0, and aσ > 0, for any integer σ ≥ 1, so that

a T κ ≤ λ/cv ≤ aT κ, aT κ ≤ η ≤ aT κ, T σ
(
|∂σ

T λ| + |∂σ
T η|

)
≤ aσ T κ. (32)

Kinetic theory suggets that 1/2 ≤ κ ≤ 1 but the situations where 0 ≤ κ < 1/2 or κ > 1 are still
interesting to investigate from a mathematical point of view.

We consider the case of functions defined on R
n with n ≥ 2, that are ‘constant at infinity’, and we

only consider solutions such that

v, T − T∞ ∈ C
(
[0, t1], H

l
)
∩ C1

(
[0, t1], H

l−2
)
∩ L2

(
[0, t1], H

l+1
)
, (33)
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where l is an integer such that l ≥ [n/2]+2, that is, l > n/2+1, and t1 is some positive time. It can be
shown that these solutions are smooth when the initial data is smooth [11]. Since the viscosity η is not
a constant, the momentum conservation equation is rewritten in the form ∂tv = P

(
∂x·(−v⊗v+η(T )d)

)
,

where P is the Leray projector defined on L2(Rn)n by P = I + R⊗R where R = (R1, . . . , Rn)t and
Ri = (−∆)−1/2∂i, 1 ≤ i ≤ n, are the Riesz transforms. This is equivalent to defining the pressure from

p = p0 + ǫ2
m

∑

1≤i,j≤n

RiRj

(
vivj − ηdij/Re

)
, (34)

where p0 is a constant pressure and we then have

p − p0 ∈ C
(
[0, t1], H

l
)
∩ C1

(
[0, t1], H

l−2
)
∩ L2

(
[0, t1], H

l+1
)

and ∂kp = ǫ2
m

∑
1≤i,j≤n RkRj

(
vi∂ivj − 2∂T η∂iT∂jvi/Re

)
.

Remark 4.1. In the particular situation λ = aλT κ and η = aηT κ, where aλ and aη are constants, if
v(t, x) and T (t, x) are a solution of the Navier-Stokes equations (29)–(31), then

ξ v(ξ2(1−κ)t, ξ(1−2κ)x), ξ2 T (ξ2(1−κ)t, ξ(1−2κ)x),

are also a solution for any positive ξ.

4.2 Higher order entropies

Generalizing the expressions (16)(24), we define the (2k)th order rescaled kinetic entropy corrector γ[k]

by

γ[k] = ǫ2k
k

( |∂kT |2
T 1+a

k

+ ǫ2
m

|∂kv|2
T a

k

)
= ǫ2k

k

( |∂kT |2
T 1+a

k

+
|∂kv|2
T a

k

)
, (35)

where |∂kT |2 =
∑

|α|=k (k!/α!)(∂αT )2 and |∂kv|2 =
∑

1≤i≤n |∂kvi|2, and where k!/α! are the multino-

mial coefficients [4], keeping in mind that hat accents are now omitted. The renormalizing factors now
involve arbitrary powers ak, k ≥ 1, of temperature. We can similarly introduce the modified rescaled
kinetic entropy corrector γ̃[k] defined by

γ̃[k] =
ǫ2k
k

T a
k
−1

(
|∂k log T |2 + ǫ2

m
|∂k(v/

√
T )|2

)
=

ǫ2k
k

T a
k
−1

(
|∂kτ |2 + ǫ2

m
|∂kw|2

)
=

ǫ2k
k

T a
k
−1

(
|∂kτ |2 + |∂kw|2

)
,

(36)
where τ = log T , w = v/

√
T , w = ǫmw = v/

√
T , and we will see that γ[k] and γ̃[k] have very similar

properties.

Proposition 4.2. Let k ≥ 1 be an integer and (v, T ) be a smooth solution of the incompressible
Navier-Stokes equations (29)–(31). We then have the balance equation

∂tγ
[k] + ∂x·(vγ[k]) + ∂x·ϕ[k]

γ + π[k]
γ + Σ

[k]
γ + ω[k]

γ = 0, (37)

where ϕ
[k]
γ is a flux and π

[k]
γ + Σ

[k]
γ + ω

[k]
γ a source term. The term π

[k]
γ is given by

π[k]
γ =

ǫ2k
k

Re

(2λ

cv

|∂k+1T |2
T 1+a

k

+ 2η ǫ2
m

|∂k+1v|2
T a

k

)
=

ǫ2k
k

Re

(2λ

cv

|∂k+1T |2
T 1+a

k

+ 2η
|∂k+1v|2

T a
k

)
, (38)

in such a way that
2a γ[k+1] ≤ ǫ2

k
Re π[k]

γ T−(ak+1−ak+κ) ≤ 2a γ[k+1]. (39)

The term Σ
[k]
γ is given by

Σ
[k]
γ =

∑

σνµ

ǫ2k
k

Re

(
cσνµ∂σ

T λ + c′σνµ∂σ
T η

)
T σ−κ Π(k+1)

ν Π(k+1)
µ +

∑

σνµR

ǫ2k
k

Re
cσνµRΠ(k+1)

ν R
(
T σ−κ∂σ

T η Π(k+1)
µ

)
,

(40)
where the sums are over 0 ≤ σ ≤ k, ν = (να, ν′

α)1≤|α|≤k+1, µ = (µα, µ′
α)1≤|α|≤k+1, να, ν′

α, µα, µ′
α ∈ N,

α ∈ N
n, and for R singular operator in the form T−θRiRjT

θ with θ = (ak + κ)/2 and 1 ≤ i, j ≤ n.

The products Π
(k+1)
ν and Π

(k+1)
µ are given by

Π(k+1)
ν = T (1−ak+κ)/2

∏

1≤|α|≤k+1

(∂αT

T

)να
(∂α(ǫmv)√

T

)ν′

α

, (41)
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where v denotes—with a sligth abuse of notation—any of its components v1, . . . , vn, and µ and ν are
such that

∑
1≤|α|≤k+1 |α|(να+ν′

α) =
∑

1≤|α|≤k+1 |α|(µα+µ′
α) = k+1,

∑
|α|=k+1(να+ν′

α+µα+µ′
α) ≤ 1,

in such a way that there is at most one derivative of order k + 1 in the product Π
(k+1)
ν Π

(k+1)
µ , and the

coefficients cσνµ, c′σνµ, et cσνµR are constants. Finally, the term ω
[k]
γ can be written

ω[k]
γ T−(1−2κ+ak−1−ak)/2 =

∑

νµ

ǫ2k−1
k

Re
cνµΠ(k)

ν Π(k+1)
µ +

∑

νµR

ǫ2k−1
k

Re
cνµRΠ(k)

ν R
(
Π(k+1)

µ

)
, (42)

where we sum over
∑

1≤|α|≤k |α|(να + ν′
α) = k,

∑
1≤|α|≤k |α|(µα + µ′

α) = k + 1, so that in particular
∑

|α|=k+1(µα + µ′
α) = 0 and there are always two factors in the product Π

(k+1)
µ , and where R is a

singular operator in the form T−θRiRjT
θ with θ = (1 + ak − κ)/2 and 1 ≤ i, j ≤ n.

Proof. The proof is lenghty but does not present serious difficulties other than notational and is similar
to the proofs given in [11] for unscaled equations.

Remark 4.3. Note that the velocity v = ǫmv naturally appears in the multilinear products (41). A
similar balance equation can also be established for the rescaled modified higher order entropy γ̃[k] (36)
[11].

Remark 4.4. Replacing ∂xv by d in the definition of γ[k] would yield

γ̆[k] = ǫ2k
k

( |∂k
xT |2

T 1+a
k

+ ǫ2
m

|∂k−1
x d|2
T a

k

)
= ǫ2k

k

( |∂k
xT |2

T 1+a
k

+

∣∣∂k−1
x (∂xv + ∂xvt)

∣∣2

T a
k

)
,

which is similar for k = 1 to the quantity −S(2) introduced in Section 1.2. However, the definitions
(6), (7), (35), and γ̆[k] are equivalent for k ≥ 2 since 2∂j∂lvi = ∂ldij + ∂jdil − ∂idjl for any v ∈ H1 and
any indices (i, j, l) and yield similar results for k = 1 since for any v ∈ H1 and any index pair (i, j) we
have [21]

2∂jvi = dij −
∑

1≤l≤n

RlRjdli +
∑

1≤l≤n

RlRidlj ,

where Ri = (−∆)−1/2∂i are the Riesz transforms, 1 ≤ i ≤ n, keeping in mind that the operators
T θRiT

−θ are continuous for ‖ logT ‖BMO small enough.

4.3 A priori estimates

We now introduce the quantity

χ = ‖ log T ‖BMO + ǫm ‖v/
√

T‖L∞ = ‖ logT ‖BMO + ‖v/
√

T‖L∞ = ‖τ‖BMO + ‖w‖L∞ , (43)

and we want to estimate
∫

Rn|Σ[k]
γ | dx with

∫
Rnπ

[k]
γ dx when χ is small egough, using the weighted in-

equalities established in the Section 3. This quantity χ is invariant by the change of scales of Remark
4.1 and involve the natural variables τ = log T and w = ǫmv/

√
T associated with Maxwellian distribu-

tions. A constraint in the form χ < δ can also be interpreted heuristically as a constraint on the Mach
number since formally χ = O(ǫm).

Proposition 4.5. Let k ≥ 1 be an integer and (v, T ) be a smooth solution of the incompressible Navier-
Stokes equations (29)–(31). There exists positive constants δ(k, n) and c(k, n)—independent of ǫk and
ǫm—such that for χ < δ we have

∫

Rn

|Σ[k]
γ | dx ≤ c χ

∫

Rn

π[k]
γ dx. (44)

Proof. The multiplicative factors ǫ2k
k

are identical on both sides and do not introduce difficulties. From

the expressions (40) for Σ
[k]
γ , since the quantities T σ−κ∂σ

T λ and T σ−κ∂σ
T η are uniformly bounded from

assumptions (23) (32), and since the operators T θRiRjT
−θ are continuous over L2 for ‖ logT ‖BMO

small enough, we only have to estimate the L2 norm of the products Π
(k+1)
ν and Π

(k+1)
µ . However, using

the multilinear estimates of Theorem 3.7 with p = 2, we obtain when ‖ logT ‖BMO + ‖v/
√

T‖L∞ <
δ(k, n) the weighted inequalities

‖Π(k+1)
ν ‖L2 ≤ cχNν−1

(
‖T θ

2
∂k+1T

T
‖L2 + ‖T θ

2
∂k+1v√

T
‖L2

)
,
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where θ = 1 − ak + κ, c = c(k, n), and Nν =
∑

1≤|α|≤k+1(να + ν′
α). As a consequence, inserting the

ǫ2k
k

factors, we have

ǫ2k
k
‖Π(k+1)

ν ‖L2‖Π(k+1)
µ ‖L2 ≤ cχNν+Nµ−2

∫

Rn

π[k]
γ dx,

and the proof is complete from Nν + Nµ − 2 =
∑

1≤|α|≤k+1(να + ν′
α + µα + µ′

α) − 2 ≥ 1 since at least

one of the products Π
(k+1)
ν or Π

(k+1)
µ is split into two or more derivative factors.

These estimates imply in particular that (1−cχ)
∫

Rnπ
[k]
γ dx ≤

∫
Rn(π

[k]
γ +Σ

[k]
γ )dx ≤ (1+cχ)

∫
Rnπ

[k]
γ dx as

soon as χ is small enough, so that

∂t

∫

Rn

γ[k] dx + (1 − c χ)

∫

Rn

π[k]
γ dx ≤

∫

Rn

|ω[k]
γ | dx. (45)

One can also establish, by using the same type of techniques, that
∫

Rn|γ[k] − γ̃[k]| dx ≤ cχ
∫

Rnγ
[k] dx so

that
∫

Rnγ
[k] dx and

∫
Rnγ̃

[k] dx are asymptotically equivalent as χ → 0. We now estimate the contribu-

tions arising from convective terms.

Proposition 4.6. Let k ≥ 1 be an integer and (v, T ) be a smooth solution of the incompressible Navier-
Stokes equations (29)–(31). There exists positive constants δ(k, n) and c(k, n)—independent of ǫk and
ǫm—such that for χ < δ we have

∫

Rn

|ω[k]
γ | dx ≤ cχ sup

Rn

{T (1−2κ+ak−1−ak)/2}
(∫

Rn

π[k−1]
γ dx

) 1
2
(∫

Rn

π[k]
γ dx

) 1
2

. (46)

Proof. From (42) and the continuity of the operators T θRiRjT
−θ for ‖ log T ‖BMO small enough, we

deduce after some algebra that

∫

Rn

|ω[k]
γ | dx ≤ c sup

Rn

{T (1−2κ+ak−1−ak)/2} ǫ2k−1
k

‖Π(k)
ν ‖L2 ‖Π(k+1)

µ ‖L2 ,

and the estimate (46) is a direct consequence of the inequalities established in the proof of Proposition

4.5 since there are at least two derivatives factors in the product Π
(k+1)
µ .

Corollary 4.7. Let k ≥ 1 be an integer and (v, T ) be a smooth solution of the incompressible Navier-
Stokes equations (29)–(31). There exists positive constants δχ(k, n) and c(k, n)—independent of ǫk and
ǫm—such that for χ < δχ we have

∂t

∫

Rn

γ[k] dx +
a

ǫ2
k

Re

∫

Rn

T ak+1−ak+κ γ[k+1] dx ≤ cχ2

ǫ2
k

Re
sup

Rn

T (1−2κ+ak−1−ak)

∫

Rn

T ak−ak−1+κ γ[k] dx,

(47)
with similar results for the modified entropies

∂t

∫

Rn

γ̃[k] dx +
a

ǫ2
k

Re

∫

Rn

T ak+1−ak+κ γ̃[k+1] dx ≤ cχ2

ǫ2
k

Re
sup

Rn

T (1−2κ+ak−1−ak)

∫

Rn

T ak−ak−1+κ γ̃[k] dx.

(48)

Proof. The first inequality (47) is a consequence of Propositions 4.5, 4.6 and 2z ≤ ε + z2/ε. The proof
of the second inequality (48) is similar and the details are omitted.

4.4 Zeroth order estimates

In order to recast the zeroth order entropy balance into a convenient form, we now define γ[0] = γ̃[0],
for 0 < a0 ≤ 1, by

γ[0] = γ̃[0] =






T − T∞

T∞

− log
( T

T∞

)
+ 1

2ǫ2
m

v2

cvT∞

, if a0 = 1,

T − T∞

T
a
0

∞
− T 1−a0 − T

1−a0
∞

1 − a0

+ 1
2ǫ2

m

v2

cvT
a
0

∞
, if 0 < a0 < 1.

(49)

11



Proposition 4.8. Let 0 < a0 ≤ 1 and let γ[0] be given by (49). Then γ[0] ≥ 0 and there exists positive
constants δ0 > 0 and b′0 such that for χ < δ0 small enough

∂t

∫

Rn

γ[0] dx + b′0

∫

Rn

π[0]
γ dx ≤ 0, (50)

where we define from (38)

π[0]
γ = 1

Re

(2λ

cv

|∂1
xT |2

T 1+a
0

+ 2ηǫ2
m

|∂1
xv|2
T a

0

)
= 1

Re

(2λ

cv

|∂1
xT |2

T 1+a
0

+ 2η
|∂1

xv|2
T a

0

)
.

Equivalently, there exists a positive constant b0 such that for χ < δ0 we have

∂t

∫

Rn

γ[0] dx +
2b0

ǫ2
k

Re

∫

Rn

T κ+a1−a0γ[1] dx ≤ 0, (51)

with a similar result for the modified entropies

∂t

∫

Rn

γ̃[0] dx +
2b0

ǫ2
k

Re

∫

Rn

T κ+a1−a0 γ̃[1] dx ≤ 0. (52)

Proof. We only consider the case a0 = 1 since the case 0 < a0 < 1 is similar. It is first easily established
that the temperature part of γ[0] is nonnegative so that γ[0] ≥ 0. Dividing the temperature equation
by T and integrating over R

n we obtain after some algebra

−∂t

∫

Rn

log
( T

T∞

)
dx +

1

Re cv

∫

Rn

λ|∂xT |2
T 2

dx +
ǫ2
m

2Re cv

∫

Rn

η|d|2
T

dx = 0.

On the other hand, dividing the total energy conservation equation by T∞ and integrating over R
n we

obtain

∂t

∫

Rn

(T − T∞

T∞

+ 1
2

ǫ2
m

v2

cvT∞

)
dx = 0.

Finally, from the relations between ∂xv and d of Remark 4.4, we obtain
∫

Rn

|∂xv|2

T 1−κ
dx ≤ c

∫
Rn

|d|2

T 1−κ
dx

for ‖ logT ‖BMO small enough and combining these estimates completes the proof of (50) and (51).
Inequality (52) is then a consequence of (51) and of ∂xw = ∂xv/

√
T − 1

2w⊗∂xτ [11].

4.5 Higher order entropic inequalities

We define the (2k)th order kinetic entropy estimators by Γ[k] = γ[0]+· · ·+γ[k] and Γ̃[k] = γ̃[0]+· · ·+γ̃[k],
for k ≥ 0, so that

Γ[k] = γ[0] +
∑

1≤l≤k

ǫ2l
k

( |∂l
xT |2

T 1+a
l

+ ǫ2
m

|∂l
xv|2
T a

l

)
, (53)

Γ̃[k] = γ̃[0] +
∑

1≤l≤k

ǫ2l
k

T a
l
−1

(
|∂l

xτ |2 + ǫ2
m
|∂l

xw|2
)
, (54)

and we have to establish that these kinetic entropy estimators obey entropic principles for the solutions
of the incompressible fluid model (29)–(31). From a terminology point of view, strictly speaking,
we should term γ[k] and γ̃[k] “mathematical (2k)th order partial entropies” or “(2k)th order kinetic
entropy majorizing correctors” or “(2k)th order kinetic entropy deviation estimators” and Γ[k] and

Γ̃[k] “mathematical (2k)th order entropies”, or “(2k)th order kinetic entropy estimators”. However, we

informally term γ[k], γ̃[k], Γ[k] and Γ̃[k] “mathematical (2k)th order entropies” or simply “higher order
entropies”.

In order to combine the estimates obtained in the previous sections, we need to specify the scale of
temperature weights ak, k ≥ 0, used to renormalize the successive derivatives of T and of ǫmv = v. A
first possibility is to impose that all sup

RnT z factors of the convective terms estimates of Proposition
4.6 and of Corollary 4.7 disappear by letting z = 0, that is, by letting 1 − 2κ + ak−1 − ak = 0, k ≥ 1,
in such a way that

ak = a0 + k(1 − 2κ), k ≥ 0.

12



This scale fulfills the natural requirement that estimates for γ[k−1] and π
[k−1]
γ and the conditional

entropicity property (45) yield estimates for γ[k] and π
[k]
γ . This scale of temperature weights also cor-

responds to the scale given by the kinetic theory of gases with (16) (24) since the factor (η/ρ
√

rT )2k =
(η2/ρ2rT )k yields the temperature exponent k(1 − 2κ) from assumptions (32) and incompressibility.
This scale of temperature weights is also important for compressible models [12]. Therefore, this scale
ak = a0 + k(1 − 2κ), k ≥ 0, can be termed the natural scale of temperature weights. It is interesting
to note that with this scale, ak is decreasing with k for physical values of κ, that is, for values such
that κ ≥ 1/2. On the other hand, ak is increasing with k for unphysical values of κ, that is, for values
such that 0 ≤ κ < 1/2. This means in particular that, in the unphysical situation 0 ≤ κ < 1/2, larger
powers of T are needed in order to renormalize higher derivatives so that only the situation κ ≥ 1/2
seems to be interesting from a practical point of view.

On the other hand, one can also impose that the temperature weights are all equal

ak = a0, k ≥ 0,

and this scale of temperature weights is termed the uniform scale. It is important to note that the
sup

RnT z factors of the right members of (46) in Proposition 4.6 cannot be majorized in terms of the
solution derivatives since T∞ > 0. As a consequence, taking into account the natural lower bound
for temperature in terms of initial data T ≥ Tmin > 0, controling these sup

RnT z factors require to
have negative z exponents in (46). Therefore, we must have 1 − 2κ + ak−1 − ak ≤ 0, k ≥ 1, and thus
a0+k(1−2κ) ≤ ak, for k ≥ 0, and the natural scale of temperature weights appears to be a lower bound
among all the useful scales. In particular, selecting a uniform scale requires that k(1 − 2κ) ≤ Cte, so
that we must have κ ≥ 1/2. In other words, the transport coefficients have to follow the temperature
dependence given by the kinetic theory in order to use a uniform scale. With this scale, higher order
entropy estimates directly yield estimates of higher order derivatives of log T and v/

√
T .

Theorem 4.9. Let k ≥ 1 be an integer and (v, T ) be a smooth solution of the incompressible Navier-
Stokes equations (29)–(31). Assume that κ ≥ 1/2, al = a0, l ≥ 0, Tmin ≤ T , and let k ≥ 1 be fixed.
There exists positive constants b = min(b0, a) and δu(k, n, Tmin) such that for χ < δu we have the
estimates

∂t

∫

Rn

(γ[0] + · · · + γ[k]) dx +
b

ǫ2
k
Re

∫

Rn

T κ(γ[1] + · · · + γ[k+1]) dx ≤ 0, (55)

with similar results for the modified higher order entropies

∂t

∫

Rn

(γ̃[0] + · · · + γ̃[k]) dx +
b

ǫ2
k
Re

∫

Rn

T κ(γ̃[1] + · · · + γ̃[k+1]) dx ≤ 0. (56)

Proof. The inequality (55) is a consequence of the estimates of Propositions 4.5, 4.6 and 4.8, and the
proof of (56) is similar.

Theorem 4.9 shows that the (2k)th order kinetic entropy estimators Γ[k] = γ[0] +γ[1] + · · ·+γ[k] and

Γ̃[k] = γ̃[0]+ γ̃[1]+ · · ·+ γ̃[k] effectively obey entropic principles. These higher order entropic inequalities
yield new a priori estimates as soon as the quantity χ = ‖ log T ‖BMO + ǫm‖v/

√
T‖L∞ is small enough.

This quantity is small when the Mach number is small since formally χ = O(ǫm). The estimates (56)
are especially useful in the situation of logarithmic scaling ak = 1, k ≥ 0, since they directly yield

estimates for derivatives of τ = log T and w = ǫmv/
√

T in the form

∂t

∫

Rn

(
γ̃[0] +

∑

1≤l≤k

ǫ2l
k

(|∂l
xτ |2 + |∂l

xw|2)
)
dx +

b

Re

∫

Rn

T κ
∑

1≤l≤k+1

ǫ
2(l−1)
k

(
|∂l

xτ |2 + |∂l
xw|2

)
dx ≤ 0. (57)

Furthermore, taking into account w2 ≤ v2/Tmin and the inequality

Tmin

2T∞

|τ − τ∞|2 ≤ exp(τ − τ∞) − 1 − (τ − τ∞), (58)

valid for τmin = log Tmin ≤ τ , where τ∞ = log T∞ and Tmin ≤ T∞, we deduce that
∑

0≤l≤k

ǫ2l
k

(
|∂l

x(τ − τ∞)|2 + |∂l
xw|2

)
=

∑

0≤l≤k

(
|∂l

x̄(τ − τ∞)|2 + |∂l
x̄w|2

)
≤ c(Tmin) Γ̃[k], (59)

for some constant c(Tmin) where x = ǫkx. In other words, ǫ−n
k

∫
RnΓ̃

[k] dx =
∫

RnΓ̃
[k] dx̄ essentially

represents a Sobolev norm of w− w∞ = (w, τ − τ∞) in molecular coordinates x̄.
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5 Application to asymptotic stability

As an example of application of higher order entropy estimates we investigate in this section global
existence of solutions for small Mach and Knudsen numbers. We assume throughout this section that
the scale of temperature weights is uniform with ak = 1, k ≥ 0, and that the transport coefficients λ
and η satisfy assumptions (23) (32) with κ ≥ 1/2. We also assume that the initial state is such that
τ0 − τ∞ = O(ǫm) and w0 = O(ǫm).

We first use the rescaled equations in molecular coordinates for convenience and strenghen an
existence result obtained in [10, 11]. We indeed investigate a priori bounds of kinetic entropic correctors
in the form of powers of the Knudsen number. These estimates are then combined with the local
existence results of [10, 11] in order to establish existence of a global solution. The derivatives of the
corresponding solutions properly scale as powers of the Knudsen number and these results are then
mapped back to the physical variables.

5.1 A stable domain

We denote by w the combined unknown w = (w, τ), where τ = log T and w = ǫmw = ǫmv/
√

T , and
we also define v = (v, T ). We denote accordingly by w∞ the equilibrium point w∞ = (0, log T∞)
with w∞ = 0 and T∞ > 0. We denote by O

w
= R

n+1 the natural domain for the variable w, where
n ≥ 2. We use the molecular coordinates (t̄, x̄), where t̄ = t/ǫmǫk = t/ǫ2

k
Re and x̄ = x/ǫk, and

the corresponding rescaled equations presented in Section 2.4. We will frequently commit the small
abuse of notation of denoting by the same letter a function of x̄ and the corresponding function of the
macroscopic variable x for the sake of notational simplicity.

If φ̄ is a smooth function of x̄, then
∫

Rn|∂k
x̄φ̄|2 dx̄ = ǫ2k−n

k

∫
Rn|∂k

x φ̄|2 dx, and further assuming φ̄ = ǫmφ

we have ∫

Rn

|∂k
x̄ φ̄|2 dx̄ = ǫ2k+2−n

k
Re2

∫

Rn

|∂k
xφ|2 dx,

so that
∫

Rn|∂k
x̄φ̄|2 dx̄ is of the order ǫ2k+2−n

k
if the integral Re2

∫
Rn|∂k

xφ|2 dx is of order unity. We

investigate in the following a priori estimates of higher order entropy corrector integrals
∫

Rnγ̃
[k] dx̄ with

such a scaling law ǫ2k+2−n
k

. Note that composite quantities like Γ̃[k] cannot be used anymore in order
to establish such a scaling law ǫ2k+2−n

k
for γ̃[k] or γ[k] since there is a different exponent 2k + 2− n for

each derivative index k.
A fundamental difficulty associated with molecular coordinates is that space integrals

∫
Rnφdx̄ are

O(ǫ−n
k

) with respect to the corresponding space integrals
∫

Rnφdx in macroscopic coordinates x. These

ǫ−n
k

factors introduce extra difficulties for controlling ‖w − w∞‖2
L∞ from Sobolev norms in molecular

coordinates. We indeed have to establish that ‖w − w∞‖2
L∞ remains O(ǫ2

m
) if it is the case at initial

time. In order to achieve such a control it is necessary to combine the scaling law for derivatives∫
Rnγ̃

[k] dx̄ = O(ǫk
2k+2−n) together with scale invariant interpolation inequalities. Upon using the

scaling law for the integrals
∫

Rnγ̃
[k] dx̄ and assuming that the initial state is O(ǫ2

m
) it is then possible

to cancel the ǫ−n
k

factor and to establish that ‖w− w∞‖L∞ effectively remains O(ǫ2
m
).

Proposition 5.1. Let l ≥ [n/2]+2 be an integer, and let v be a smooth solution of the incompressible
Navier-Sokes equations (20)–(22) over [0, t̄1]×R

n. Let a > 0, ξ > 0, and assume that the initial state
satisfies the conditions ∫

Rn

γ̃
[k]
0 dx̄ ≤ ξ2k+2−n

a, 0 ≤ k ≤ l, (60)

where γ̃
[k]
0 denotes the functional γ̃[k] evaluated at initial time t = 0. There exist constants a0(l, n, Tmin)

and δ̄(l, n, Tmin) such that if a ≤ a0 and aξ2 ≤ δ̄, whenever the initial conditions satisfy (60), then for
all time t ∈ [0, t1] we have ∫

Rn

γ̃[k] dx̄ ≤ 2ξ2k+2−n
a, 0 ≤ k ≤ l. (61)

Moreover we have the estimate
‖w− w∞‖2

L∞ ≤ 2c0Aξ2, (62)

for some contant c0(l, n, Tmin) and we also have χ ≤ 1
2δχ where δχ is defined in Corollary 4.7.

14



Proof. We use the scale invariant interpolation inequality valid for n < 2m

∥∥φ
∥∥

L∞
≤ C0

∥∥∂m
x̄ φ

∥∥ n
2m

L2

∥∥φ
∥∥1− n

2m

L2 , (63)

where C0 depends on n and m and the estimate

‖w− w∞‖2
L2 ≤ Ĉ0

∫

Rn

γ̃[0] dx̄, (64)

where Ĉ0 only depends of Tmin. Combining (63) and (64) with m = l we deduce that there exists a
constant c0(l, n, Tmin) such that

‖w − w∞‖2
L∞ ≤ c0

(∫

Rn

γ̃[l] dx̄
) n

2l
(∫

Rn

γ̃[0] dx̄
)1− n

2l

. (65)

From this inequality we obtain that at t = 0

‖w − w∞‖2
L∞ ≤ c0

(
ξ2l+2−n

a

) n
2l

(
ξ2−n

a

)1− n
2l ≤ c0aξ2, (66)

so that initially χ2(0) ≤ c0aξ2. On the other hand when χ < δχ(l, n, Tmin) we also have entropic
estimates similar to the estimates (48) and (52) but expressed in molecular coordinates, where b =
min(b0, a) and c = c(l, n, Tmin)

∂t̄

∫

Rn

γ̃[0] dx̄ + b

∫

Rn

T κγ̃[1] dx̄ ≤ 0, (67)

∂t̄

∫

Rn

γ̃[k] dx̄ + b

∫

Rn

T κγ̃[k+1] dx̄ ≤ cχ2

∫

Rn

T κγ̃[k] dx̄, 1 ≤ k ≤ l. (68)

We denote by χmax a maximum value of χ over a domain [0, s]×R
n for some s > 0. Upon integrating

(67) (68) with respect to the time variable over [0, s], and by combining the resulting inequalities, it is
easily shown that for 0 ≤ k ≤ l and 0 ≤ t̄ ≤ s we have for c̄ = c/b

∫

Rn

γ̃[k] dx̄ ≤
∫

Rn

γ̃
[k]
0 dx̄ + c̄χ2

max

∫

Rn

γ̃
[k−1]
0 dx̄ + · · · + (c̄χ2

max)
k

∫

Rn

γ̃
[0]
0 dx̄. (69)

Since χ2(0) ≤ c0aξ2 we may assume that χ2
max ≤ 3c0aξ2 over some time interval and further assuming

that 3c0aξ2 ≤ (1
2δχ)2 we deduce from the entropic estimates (69) that

∫

Rn

γ̃[k] dx̄ ≤ aξ2k+2−n
(
1 + 3c̄c0a + · · · + (3c̄c0a)k

)
, 0 ≤ k ≤ l. (70)

From (65) we obtain that over the time interval [0, s]

χ2
max ≤ ‖w− w∞‖2

L∞ ≤ c0aξ2
(
1 + 3c̄c0a + · · · + (3c̄c0a)l

) n
2l . (71)

Assuming now that a0 is small enough so that for any a ≤ a0 we have

c0a
(
1 + 3c̄c0a + · · · + (3c̄c0a)l

)
≤ 2c0a, (72)

we obtain that χ2
max ≤ 2c0aξ2 over [0, s]. Defining

E = { s ∈ (0, t̄1], ∀ŝ ∈ [0, s], ‖w− w∞‖2
L∞ ≤ 3c0aξ2 } (73)

and assuming that 3c0aξ2 < (1
2δχ)2 it is easily established that E is not empty and supE = t̄1.

Therefore we may set δ̄(l, n, Tmin) = (1/12c0)δ
2
χ and we finally have ‖w− w∞‖2

L∞ ≤ 2c0aξ2.

We now obtain a global existence theorem by combining the estimates of Proposition 5.1 with a
local existence result obtained in [10, 11].
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Theorem 5.2. Let n ≥ 2 and l ≥ [n/2]+2 be integers and assume that T0 and v0 satisfy Tmin ≤ infRnT0,
∂x·v0 = 0, v0 − v∞ ∈ Hk, k ∈ N. Let a > 0, ξ > 0, and assume that

∫

Rn

γ̃
[k]
0 dx̄ ≤ ξ2k+2−n

a, 0 ≤ k ≤ l, (74)

where γ̃
[k]
0 denotes the functional γ̃[k] evaluated at initial time t = 0. There exist constants a0(l, n, Tmin) >

0 and δ̄(l, n, Tmin) > 0 such that for a ≤ a0 and aξ2 ≤ δ̄ there exists a unique global solution v = (w, T )
such that {

v− v∞,w − w∞ ∈ C
(
[0,∞), H l(Rn)

)
∩ C1

(
[0,∞), H l−2(Rn)

)
,

∂xv, ∂xw ∈ L2
(
(0,∞), H l(Rn)

)
,

(75)

and we have the estimates ∫

Rn

γ̃[k] dx̄ ≤ 2ξ2k+2−n
a, 0 ≤ k ≤ l, (76)

Furthermore, this solution is smooth and we have

lim
t̄→∞

‖v(t̄, ·) − v∞‖L∞ = 0. (77)

Proof. We select the constants a0(l, n, Tmin) > 0 and δ̄(l, n, Tmin) > 0 of Proposition 5.1. These value
will indeed insure that χ remains small with χ ≤ 1

2δχ. Corresponding to this value of δ̄, we have
estimates in the forms ‖w − w∞‖2

L∞ ≤ 2c0aξ2. We now select mw̄ > 0 and mτ > 0 large enough such
that

{ z ∈ R
n+1; ‖z − w∞‖ ≤ (2c0a)1/2ξ + 1 } ⊂ (−mw̄,mw̄)n × (−mτ ,mτ ),

we define Õ0 = (−mw̄,mw̄)n × (−mτ ,mτ ), O0 = F−1(Õ0), where F : R
n×(0,∞) → R

n+1 is given by
F(v, T) = (v/

√
T, log T), and one can show that O0 is convex [11]. Let then 0 < d1 < d(O0, ∂Ov ),

and define the open sets O1 = { z ∈ O
v

; d(z,O0) < d1 } and Õ1 = F(O1). For functions taking their
values in O1 we have inequalities in the form ‖v − v∞‖Hl ≤ m‖w − w∞‖Hl where m only depends
on l and O1 [16, 11]. We thus obtain a priori estimates in the form ‖v − v∞‖Hl ≤ C(a, ξ) where

C(a, ξ)2 = 2m2(1 + Ĉ0)
∑

0≤i≤l ξ
2i+2−n

a. We then set b = C(a, ξ) + 1 and from the local existence
theorem established in [11] we have local solutions over a time interval [0, t̄1 ] built with the paramaters
O0, d1, and b. It is important to note that the parameter b may be large because the norms

∫
Rnγ̃

[k] dx̄

in molecular coordinates scale like 2ξ2k+2−n
a, so that t̄1, which depends on a and ξ, will be smaller as

ξ gets smaller. However, in order to establish a global existence theorem, we can use a different local
existence time t̄1 for each fixed values of a and ξ.

Let v = (v0, T0) satisfy Tmin ≤ infRnT0, ∂x·v0 = 0, v0−v∞ ∈ Hk, k ∈ N, and
∫

Rnγ̃
[k]
0 dx̄ ≤ ξ2k+2−n

a

for 0 ≤ k ≤ l. Then by construction v0 ∈ O0 and ‖v− v∞‖Hl < b, and we have a local solution over

the time interval [0, t̄1 ]. It is then straightforward to establish that ‖w − w‖2
L∞ remains smaller that

2c0aξ2 over [0, t̄1 ] and that the estimates of Proposition 5.1 hold. In particular we have v(t̄1) ∈ O0

and ‖v(t̄1) − v∞‖Hl < b. We may now use again the local existence theorem over [t̄1, 2t̄1 ] and the
estimates of Proposition 5.1 hold on [0, 2t̄1 ]. An easy induction shows that the solution is a global
solution.

In order to establish asymptotic stability we let Φ(t̄ ) =
∫

Rnγ̃
[l−1] dx̄ =

∫
Rn‖∂l−1

x̄ w‖2 dx̄ and from the

equations governing higher order entropies it is easily checked that there exists a constant C(l, n, Tmin)
such that

ξ2

∫ ∞

0

|Φ(t̄ )| dt̄ +

∫ ∞

0

|∂t̄Φ(t̄ )| dt̄ ≤ C(l, n, Tmin) ξ2l−n
a. (78)

As a consequence, we have Φ(t̄ ) → 0 as ξ2t̄ → ∞ and asymptotic stability is then a consequence of
the interpolation inequality ‖φ‖L∞ ≤ C0 ‖∂l−1

x φ‖a

L2 ‖φ‖1−a
L2 where a = n/2(l − 1) and the proof is

complete.

5.2 Global existence for small Mach and Knudsen numbers

In this section, we investigate global existence of solutions for small Mach and Kundsen numbers.
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Theorem 5.3. Let n ≥ 2 and l ≥ [n/2] + 2 be integers. Assume that the coefficients λ and η satisfy
(23) with κ ≥ 1/2 and that ak = 1, for k ≥ 0. Assume that T0 and v0 satisfying Tmin ≤ infRnT0,
∂x·v0 = 0, v0 − v∞ ∈ Hk, k ∈ N. Let ǫk > 0, Re > 0, a > 0 and assume that

∫

Rn

γ̃
[k]
0 dx ≤ ǫ2k+2

k
Re

2
a, 0 ≤ k ≤ l, (79)

where γ̃
[k]
0 denotes the functional γ̃[k] evaluated at initial time t = 0. There exist constants a0(l, n, Tmin) >

0 and δ̄(l, n, Tmin) > 0 such that for Re2a ≤ a0 and Re2ǫ2
k
a ≤ δ̄ there exists a unique global solution

v = (v, T ) such that

{
v− v∞,w − w∞ ∈ C

(
[0,∞), H l(Rn)

)
∩ C1

(
[0,∞), H l−2(Rn)

)
,

∂xv, ∂xw ∈ L2
(
(0,∞), H l(Rn)

)
,

(80)

and we have the estimates ∫

Rn

γ̃[k] dx ≤ 2ǫ2k+2
k

Re2a, 0 ≤ k ≤ l, (81)

and for some constant c0(l, n, Tmin)

‖w− w∞‖2
L∞ ≤ 2c0ǫ

2
k
Re2a. (82)

Furthermore, this solution is smooth and we have limt→∞ ‖v(t, ·) − v∞‖L∞ = 0.

Proof. Theorem 5.3 is a consequence of Theorem 5.2 with ξ = ǫk and a replaced by Re2a. In addition,
if we set Ψ(t) =

∫
Rn‖∂l−1

x w‖2 dx we can rewrite 78 in the form

∫ ∞

0

|Ψ(t)| dt +

∫ ∞

0

|∂tΨ(t)| dt ≤ C(l, n, Tmin) ǫ2
k
a, (83)

and the convergence to v∞ holds on a macroscopic time scale.

Remark 5.4. Letting τ − τ∞ = ǫmθ and v = ǫmv one may also use the variables (v, θ) with the
macroscopic coordinates (t, x) but using the variables (w, τ) in molecular coordinates (t̄, x̄) seems more
natural. In addition, we have only used that Re2 a is small in order to obtain a stable domain so that
there is room for improvement.

Remark 5.5. The methods developped for incompressible flows can be adapted mutatis mutandis to
the situation of compressible or zero Mach number flows.
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