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Abstract

We investigate a system of partial differential equations modeling ion-
ized magnetized reactive gas mixtures. In this model, transport fluxes are
anisotropic linear combinations of fluid macroscopic variable gradients
and also include the effect of macroscopic electromagnetic forces. By us-
ing entropic variables, we first recast the system of conservation laws into
a partially symmetric conservative form and next into a partial normal
form, that is, in the form of a quasilinear partially symmetric hyperbolic-
parabolic system. Using a result of Vol’Pert and Hudjaev, we prove local
existence and uniqueness of a bounded smooth solution to the Cauchy
problem.

1 Introduction

Tonized magnetized reactive gas mixtures—or reactive plasmas—have many
practical applications such laboratory plasmas, high-speed gas flows or atmo-
spheric phenomena. In this paper, we investigate the structure and properties
of the corresponding systems of partial differential equations.

The kinetic theory of ionized gas mixtures can be used to obtain the equa-
tions governing high density low temperature plasmas. The resulting systems
are different according to the various characteristic lengths and times of the phe-
nomena under investigation. Assuming that there is a single temperature in the
mixture—this is the case for various practical applications—the corresponding
governing equations are derived in Ferziger and Kaper [1] and Giovangigli and
Graille [2] for general reactive polyatomic gas mixtures.

The corresponding equations—governing ionized magnetized reactive gas
mixtures—can be split into conservation equations, transport fluxes, thermo-
chemistry and Maxwell’s equations. A remarkable aspect is that the magnetic
field yields anisotropic diffusion mass fluxes, heat flux and viscous tensor. In par-
ticular, diffusion fluxes involve anisotropic linear combinations of macroscopic
fluid variable gradients as well as zeroth order terms arising from the action of
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macroscopic electromagnetic forces. The corresponding structural mathemat-
ical assumptions concerning thermoelectrochemistry and transport coefficients
are also derived from the kinetic theory of gases [2] and generalize the situation
of neutral species [3, 4].

The governing equations for reactive ionized magnetized gas mixtures consti-
tute a second-order quasilinear system of conservation laws. By using entropic
variables, we first recast the system into a partially symmetric conservative form
and next into a partially normal form, that is, in the form of a quasilinear par-
tially symmetric hyperbolic-parabolic system. We use the term partially sym-
metric in contrast with the neutral regime. The system of neutral gas mixtures
is indeed completely symmetric in the sense that the convective matrices which
couple together the hyperbolic and parabolic subsystems are fully symmetric
[5, 3].

For the resulting partially symmetric hyperbolic-parabolic system, we prove
existence of a unique solution to the Cauchy problem with smooth initial condi-
tions, locally in time, in the Vol'Pert space V;(R?). Our method of proof relies
on the results of Vol’pert and Hudjaev concerning the Cauchy problem for sym-
metric quasilinear hyperbolic-parabolic composite systems of partial differential
equations [6].

The governing equations for ionized magnetized reactive gas mixtures are
presented in section 2 and the quasilinear form is obtained in section 3. In
section 4, we investigate partial symmetrizability, normal form and existence of
solutions for an abstract system. Finally, in section 5, we apply these results
to the system of partial differential equations modeling multicomponent ionized
magnetized reactive gas mixtures.

2 Equations for Ionized Magnetized Reactive
Gas Mixtures

The equations governing dissipative plasmas can be split between conservation
equations, transport fluxes, thermochemistry, and Maxwell’s equations. These
equations can be derived in the framework of the kinetic theory of gases by
using a first order Enskog expansion [1, 2].

2.1 Conservation’s Equations

We denote by & the species indexing set & = {1,...,n°}, n° the number of
species, ng, pr and g the number of moles, the mass and the charge per unit
volume of the k*" species and my, the molar mass of the k' species.

The species mass conservation equations read

where v is the macroscopic velocity of the mixture, 7, the diffusion flux and wy
the chemical source term of the k*" species.
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The following equation expresses momentum conservation
O¢(pv) + Og-(pvev + pl) + 0 II = pg + qE + JAB, (2.2)

with p the total mass per unit volume, p the pressure, I the 3 by 3 unit tensor,
IT the viscous stress tensor, ¢ the total charge per unit volume, E the electric
field, B the magnetic field, g a species independent external force and J the
total electric current density defined by J = 3 + qv with j the conduction
current density

We introduce the fluid energy per unit mass ef which is defined by ef =
e+v-v/2, where e is the internal energy per unit mass. The energy conservation
equation written in terms of e’ reads

O (pe) + 8z [(pe' +p) v] + 82+(Q + ITv) = pgv + J-E, (2.3)
where @Q is the heat flux.

2.2 Transport Fluxes

A remarkable aspect of dissipative plasmas is that transport fluxes in strong
magnetic fields are anisotropic [7, 1, 2]. In order to express these anisotropic
transport fluxes, we define the unitary vector B = B/B, where B is the norm of
the magnetic field B, and for any vector X, we introduce the three associated
vectors

XI=3Bx)B, Xx*=X-XIl and X®=B.X,

which are mutually orthogonal xt.xlh= 0, xo0.xl = 0, Xt X° =0. In
addition, for any vectors X and Y, we have the relations X - Y©+X®. Y+ =0
and XY+ = XY,

The diffusion flux K, k € G, is given by

where the diffusion velocity V;, k € G, reads

Vi = = >0l (@ + ) (@al0g 1))

€6

=3 D (df + X7 (@2 log T): + X7 (92 10g T)°)
€6

=Y Dg (AP + X7 (82108 T)° = X7’ (Da log T)™) . (2.5)
]
and where the species diffusion driving force di, k € G, is given by
1
d = > [Pk — prg — qr(E +vAB)]. (2.6)

In these expressions, D,!l, D,ﬁl and D,?l, k,l € G, are the multicomponent dif-
fusion coefficients, Xl, XkL and X,?, k € G, the thermal diffusion ratios, T" the
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absolute temperature and py, k € &, the partial pressure of the k' species.
The corresponding conduction current density j reads

Jj= Z%%- (2.7)

ke

Note that for neutral gases, the charges g, k& € &, vanish and we recover
the classical expressions since we then have DL‘l = Dj, D,?l =0, kIl € G,

xli = xi, X? = 0, k € G, so that the diffusion velocities Vi, k € &, read
Vi. = = ice Dri(di + X102 1og T') [3]. For ionized gases, however the diffusion
coefficients are different according to the three spatial directions as a conse-
quence of anisotropy. We also observe that the species diffusion driving forces
dy, k € G, contain an additional term due to the macroscopic electromagnetic
force qi(E + vaB). Moreover, although our formalism uses the unitary vec-
tor B = B/B, the fluxes behave smoothly as B goes to zero as shown in the
following sections thanks to the properties of the transport coefficients.
The expression of the heat flux is

Q = M@0, = X-(8,T)*F — X°(8,T)°

Y (U V) Y e (29)
kecS keS

where hy, is the enthalpy per unit mass of the k' species, Al, X and )\® the
thermal conductivities, and )?Q, X and )?k@ other thermal diffusion ratios, where
we distinguish as well the coefficients according to the three spatial directions.

We likewise note that expression of the heat flux coincides with that for
neutral gases since Al = Xt X2 = 0, )ﬂl =X, XY =0, k € &, when the charges
qk, k € &, vanish and the heat flux then reads Q@ = —A0.T + >, s (PXk +
prhi) Vi [3]. Moreover, the heat flux is smooth as B goes to zero as shown in
the following thanks to the properties of the transport coefficients.

In order to simplify the writing of the transport properties, we define the
real matrices DIl, DL, D®, and the real vectors X!, v/, 1, x*, ¥©.x®, 01, oIl
by

D° = (DZl)k,let?’ X = res: X°=(X)res:

where ¢ denotes any symbol in {||, L, ®}, the real vectors oL, 6L+, 62, °, by
the following linear systems

ol = DI 0t +10° = (DL 4+iD®) (x +ix®),
ol = DITZ 6+ +i6° = (D +1iD®) T (FH+1X9),
and the real coefficients X”, XL, P by

A=Al 2glTply I,
XoiX? = M40 + B (Y +1X9) (D +iD?) (x +ix©).
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The viscous stress tensor can be written in the form

IT = —k(Bzv)I—mS —1n2(T(B)S —ST(B))
—n3(=T(B)ST(B) + B'SB BeB)
—14(SBeB + BeBS — 2B'SB BeB)
—5(BaBST(B) — T(B)S BaB), (2.9)

where B = B/B, & is the volume viscosity, and n1, 72, 93, 14, 15 are the
shear viscosities. In this expression we have denoted by S the strain symmetric
traceless two order tensor

S =08,v+ 90" — %(8;,;-'0)]17

where T denotes the transposition, and by T(a) the antisymmetric matrix de-
fined for any vector a = (a1, az, a3)? by

0 —as az
Ta)=| az 0 —-a
—Q2 Qa1 0

We define for convenience the vectors T;(a), i € €, as the i*® column of the
matrix T(a) so that

Ti(a) = (0,a3,—a2)", Th(a)=(-as,0,a1)", and T(a)= (a2, —a1,0)".

For neutral gases, the expression (2.9) of the viscous stress tensor becomes
IT = —K(8gv)I — 1S as we have s = 13 = ny = 15 = 0. The viscous stress
tensor then reads as a linear combination of the identity matrix I and the strain
tensor S, and, for ionized gases, as a linear combination of the identity matrix
and all the symmetric traceless two order tensors built from the strain tensor S
and the antisymmetric rotation tensor T(B) associated with the magnetic field
B. Furthermore, the viscous stress tensor behave smoothly as B goes to zero
as shown in the following thanks to the properties of the transport coefficients.

2.3 Chemical source term Expression

We consider n” elementary reversible reactions among the n° species which can
be formally written as

D v M = ) R My, reR
keS keSS

where 9, is the chemical symbol of the k™" species, V,fﬁ_ and U,ET are the forward
and the backward stoichiometric coefficients of the k™" species in the 7" reaction,

respectively, and R = {1,...,n"} is the set of reaction indexes.
The Maxwellian production rates given by the kinetic theory can be written
we = > (Ve = Vi), k€S, (2.10)
reR
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where 7, is the rate of progress of the r*" reaction. The rates of progress are
given by the symmetric expression [3]

7 = X5 (exp (v}, Mp) — exp (7, Mp)) (2.11)
where vl = (i, ... vE )T vP = (Wb R )T = (- )T, with gy,
k € G, the species reduced chemical potential, M, the diagonal matrix defined
by M = diag(myq,...,my) and XS is the symmetric reaction constant. This

symmetric formulation of the rates of progress is obtained by using the funda-
mental reciprocal relation between forward and backward reaction constants [8]
that can be deduced from the kinetic theory [3].

2.4 Thermodynamics

Thermodynamics obtained in the framework of the kinetic theory of gases is
valid out of equilibrium and has, therefore, a wider range of validity than classi-
cal thermodynamics introduced for stationary homogeneous equilibrium states.
The formalism obtained from the kinetic theory still coincides with the Gibbs
formalism applied to intensive variables [3].

The total mass per unit volume p, the total charge per unit volume ¢, and
the total pressure p can be written in the form

P= Pk A=Y G P= D Pk

ke ke ke

where the species partial pressure py, k € G, is given by pr = neprT = npRT,
with r, = R/my, R the perfect gas constant.
The internal energy e and the enthalpy h per unit mass can be decomposed

into
pe =3 prex, ph=Y pehe =Y prler +nT),
kes ked ked

where ey and hy are the internal energy and the enthalpy per unit mass of the
kth species and T the temperature. Internal energy’s expression is

T

en(T) = et —|—/ ok (T)dT,
Tst

where €5t = e, (T®!) is the formation energy of the k' species at the positive
standard temperature 7% and ¢, is the constant-volume specific heat of the
k' species. The constant-volume and constant-pressure specific heats verify

PCv = Z PkCuk,  PCp = Z PkCpk = Z Pr(Cok + k).
ke& kes kes

The entropy s per unit mass can be expressed in terms of the species en-
tropies si, k € &, from the relation

ps =Y prsk,

ke
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with

T
s Cy
Sk(T, pk) _ S?ct +/ ,k(T) dr — 1 log (mpkst) :

T'st T

where ¢ = p5' /(RT*") is the standard concentration, that is, the concentration
at the standard state T, pst. Similarly, we can express the Gibbs function g per
unit mass in terms of the species Gibbs functions g, k € &, from the relation

Pg =Y Prgr,

ke

where gi is given by gx = hyp — T's. We finally define the species reduced
chemical potential ug by pr = gr/(RT). The species Gibbs functions g and
the species reduced chemical potential uy, k € &, are functions of p; and T.
We can classically write

1
9e(pr, T) = g (T) + nTlogng,  pu(pr, T) = pie(T) + pr log n,

with g}, k € &, the species unitary Gibbs functions and uj, & € &, the species
unitary reduced chemical potentials.

2.5 Maxwell’s Equations
The electric and magnetic fields satisfy the four Maxwell’s equations

q

9, E = 1, (2.12)
€0

d.nE = —0,B, (2.13)

9, B = 0, (2.14)

7B = pio(J + 00, E), (2.15)

where € is the dielectric constant and pp the magnetic permeability. It is well
known that if the first and the third equations are verified at initial time ¢t = 0,
the two others insure that they hold at all time.

2.6 Mathematical assumptions

We describe in this subsection the mathematical assumptions concerning ther-
moelectrochemistry and transport coefficients. These assumptions are obtained
from the kinetic theory [2] and are not enough intuitive to be guessed empiri-
cally.

The species of the mixture are assumed to be constituted by neutral atoms
and electrons. We denote by 2 = {1,...,n%} the atoms indexing set, by n® the
number of atoms in the mixture, by my, [ € 2, the atom masses and by ag; the
number of I** atoms in the k" species. We define ay( as the number of electrons
in the k*® species and for notational convenience, % = 2AU {0} = {0,...,n%}.
We also introduce the atomic vectors a;, I € 2, defined by a; = (ay, ..., aps1)7,
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I € 2, and the electron vector ag, by ag = (a1, - -, aps0)’. Finally, we define s,
as the absolute value of charge per unit mole for electrons.

We now define the reaction vectors by v, = (Vip,...,Vpsy)T, 7 € R, where
Ver = VB, —VE . k € &, so that v, = v? —vL, and we denote by R the linear space
spanned by v,., r € R. We also define the molar mass vector m = (my, ..., mys )7,
the mass vector per unit volume ¢ = (p1, ..., pps)T, the charge vector per unit
mass z = (z1,...,2x)7, the charge vector per unit volume q = (q1,...,qn)",

and the unit vector u = (1,...,1)". We also have the relation q; = pgzi, k € &.

2.6.1 Assumption on thermoelectrochemistry

In all this paper, we assume that the following assumptions (Thi-Thy), which
are derived from the kinetic theory, hold.

(Thy) The species molar masses my, k € &, and the gas constant R are pos-
itive constants. The formation energies e, k € &, and the formation
entropies 3, k € &, are constants. The specific heats ¢, i, k € S, are
C* functions of T > 0. Furthermore, there exist positive constants c,
and ¢, with 0 < ¢, < cu ,(T) < Ty, for T 20 and k € G.

(Th2) The stoichiometric coefficients vl and vE , k € &, r € R, and the
atomic coefficients ay, k € &, 1 € 2, are nonnegative integers. The
numbers of electrons axg, k € &, are integers. The atomic vectors aj,
1 € A, and the reaction vectors v,, r € R, satisfy the conservation

relations (vr,a;) = 0, r € R, I € A. This relation expresses atom
conservation for I € A and charge conservation for [ = 0.

(Th3) The atom masses my, 1 € A, and the electron mass mq are positive
constants. Moreover, the species molar masses my, k € &, are given by

my = E myag -+ Modko, ke 6.
led

These relations can be written in vector form

m = E mia; + modg.
leA

We also have the proportionality relation between the species charge per
unit volume qi, k € &, and the number of electrons in the k™ species,
qx = —xagong, k € &, where s is a positive constant which represents
the absolute value of charge per unit mole for electrons. This propor-
tionality relation is equivalent to z, = —xagy/my, k € S.

(Thg) The rate constants X5, r € R, are C> positive functions of T > 0.

r
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2.6.2 Assumptions on transport coefficients

In this subsection, we introduce a set of assumptions concerning the transport
coefficients derived from the kinetic theory [2].

(Tr1)

(Trz )

(Tr3)

The fluzx diffusion coefficients DL'I, Df;l and BD,?I, k,l € G, the thermal

diffusion ratios XQ, xi» BxY, )?Q, Xi and BXY, k € &, the volume vis-

cosity K, the shear viscosities 11, Bna, N3, M4, Bns and the thermal con-
ductivities \I, X and BX® are C® functions of (T, 0, B) for T > 0,
0 > 0 and B € R3, where B is the norm of the magnetic field B.
Moreover, the coefficients DL'I, k,l € G, do not depend on the magnetic
field B and we can write Di; — DL'I = B2¢;;(B?) and D}, = B¢}, (B?),
where ¢i; and (bgl, k,l € &, are C*([0,0),R) functions. The coeffi-

cients XQ; )?Q, k € &, do not depend on the magnetic field B and we can

write Xit = i = B0t (BY), X = X = B0 (BY), X} = B (B?)
and XY = B@g(B%, where it 12}%, ¢ and 12)\,? are C*([0,00),R)
functions. The coefficient A does not depend on the magnetic field B
and we can write X- — A\l = B2§J‘(B2) and X° = Bc®(B?), where
¢t and ¢© are C*>([0,00),R) functions. Lastly, we have m = p1(B?),
e = Bpa(B?), 13 = B*p3(B?), na = B>pa(B?), 15 = Bps(B?) and
2774 —n3 = B4</76(B2)) where Pa, @ € {17---36}7 are COO([O,OO),R)
Sfunctions.

Thermal conductivities NI and X- are positive functions. The volume
viscosity k is a nonnegative function and the shear viscosities mi, 12,

N3, Na, N5 verify m +mna >0, m +n3 >0, m1 —n3 > 0.

The matrices Al, AL and A® defined by

T Xo é\oT

A® = p9<> D°

, o], L0k

verify (Allx,x) > 0 and (Atx,x) + (Aty,y) + (A9%,y) — (x, A®y) > 0,
for x,y € R"+1. Moreover, (Allx,x) = 0 if, and only if, the vector x is
proportional to the vector (0, 0")T and (Atx,x) + (Aty,y) + (A9x,y) —
(x, A®y) = 0 if, and only if, both vectors x andy are proportional to the
vector (0, o")T.

2.7 Entropy production

The entropy per unit mass s satisfies the following conservation equation

¢ (ps) + O (psv) + Bz (% — Z g%pk%) =17, (2.16)
ked
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where T is the entropy production term given by

B gemiwy  IT1:0zv 0. T P
N e CED WA Bl ST
kes kes kes

(2.17)

The entropy production term Y can be split into a sum of nonnegative terms
and this property is important from several points of view. From a thermody-
namical point of view, it shows that the macroscopic model satisfies the second
principle, inherited from the kinetic model. From a mathematical point of view,
entropy also plays a central role in establishing well posedness of the resulting
system of partial differential equations. In order to establish that the entropy
production term splits into a sum of nonnegative terms, we use the various as-
sumptions on transport coefficients that have been given in the previous section.

Using Eqgs (2.10), (2.11) the entropy production due to chemistry is easily
rewritten in the form

JrEMEWk < ¢ b exp (v, Mp)
_ N SISk N pyc Mys) — M) log | SR\ MK
kEGG T ém > (exp (v, Mp) — exp (1, Mp)) log pr W M)

Assumptions (Thy) and (Ths) on the positivity of constants R, X3, r € R, yield
that the entropy production due to chemistry is nonnegative.
Furthermore, the entropy production due to viscous effects reads

—%H:Bmv :%(Bm-v)2 +2(m + ) Tr(p”SpJ‘pJ‘Sp”)
+ (m + 1) [(Te(p!Sp1)? + (Tr(p"Sp™))?]
+ (m —n3)[Tx(p* Sp*p*Sp*) — 3(Tr(p™Sp™))?,
where Tr(A) denotes the trace of a tensor A, pll the orthogonal projection with
range spanned by the vector B and p~ = I — pll the orthogonal projection with
kernel spanned by the vector B. According to assumption (Trz) on the volume

viscosity k and the shear viscosities n1, 12, 13, 174, 15, we have to investigate the
sign of the following quantities

Te(plSptp*spl), (Te(p!Spl))* + §(Tr(p*Sp*))>,
Te(p™Sp™p=Sp™) — 5(Tr(pSp™))>%,
to prove the nonnegativity of the entropy production due to viscous effects. As
these expressions are invariant under a change of coordinates, we choose an

orthonormal basis (e1, e, e3) such as e; is proportional to the vector B. In this
situation, we then obtain

Tr(p”SpJ‘pJ‘Sp”) = 5%2 + 5%3,
(Te(pspl))? + 3(Tr(p* Sp*))® = S3, + (S22 + Ss3),
and

Te(p™Sp~p Sp*) — 5(Te(p*Sp™))* = 2535 + 5(S22 — S33)*,

10
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so that —%H :v is nonnegative and is zero if and only if S is zero.
We finally show that the entropy production term involving the heat flux
and the diffusion velocities

0. T P
T, = - (Q - mhM) = > edk,

ke keS

is nonnegative. By using expressions (2.5) and (2.8) of V, k € &, and Q, we
can write

p
Ty =235 [eald o) + Jatat ) + a5 x9)
€S
+5(A9% %) = 57, A7) |,
with x¢ = (£((82T)°);, (d});,- .-, (d),)", for o € {||, L,®} and i € €. By
using assumption (Tr3), we immediately obtain that the last term involving the
heat flux and the diffusion velocities is nonnegative.

2.8 Alternative formulations

The resulting balance equations describing the fluid (2.1)—(2.3) and Maxwell’s
equations (2.13) (2.15) are not in a conservative form. The source terms contain
in particular the electric current density J. We now discuss three different
formulations of these equations by recombination with Maxwell’s equations.
We define the electromagnetic energy per unit mass e® by pe® = (egE? +
B?/110)/2, the Poynting vector P by P = (EAB)/ug and the electromagnetic
force tensor T by T = egEoE + BoB/ug — (eoE-E + B-B/pug)/21. By using
Maxwell’s equations, we obtain the electromagnetic momentum conservation
equation
8t(€0,LLOP) — 8mT: —qE — J/\B7 (218)

and the electromagnetic energy conservation equation
O(pe®) + 84 P =—J-E. (2.19)

Combining equation (2.18) with the momentum conservation equation (2.2)
yields the total momentum conservation equation

O¢(pv + oo P) + Bz (pvev + pl — T) = pg, (2.20)

and combining equation with the kinetic and internal energy conservation
equation yields the total energy conservation equation

0i(pe") + 0x-[(pe' + p)v] + 84-(Q + IT-v) = pg-v, (2.21)
where the total energy per unit mass e' is defined by

pet = pel + pe® = pe + spv-v + 1(eoE-E + tB-B).

11
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Various systems of balance equations coupled with Maxwell’s equations can
then be considered. These systems are formally equivalent but their mathe-
matical structures are different. The first one corresponds to the original fluid
conservation equations

Oipr + Oz (prv) + Oz (F) = mpwy, ke 6,
Oi(pv) + Oz (pvov + pl) + 85-IT = pg + ¢E + JAB, (2.22)
Ou(pe') + 8- [(pe' +p) v] + 82:(Q + ITw) = pgv + J-E.

A second possibility is the conservative formulation

Oipr + Oz (prv) + Oz (F) = mpwy, k€ G,
O (prv + oo P) + Bz (pvev + pl — T) = pg, (2.23)
i (pe’) + Bz-[(pe’ + p)v] + 84+(Q + IT-v) = pg-v.

A last possibility is of intermediate form

Oipr + O (prv) + 0o (F) = mpwi,, k€S,
Oi(pv) + Oz-(pvev + pl) + 85-II = pg + ¢E + JAB, (2.24)
Oi(pe') + Bz-[(pe* + p)v] + 8.-(Q + IT-v) = pg-v.

The first system (2.22) is not satisfactory since the Hessian of —ps with re-
spect to the corresponding conservative variable (p1, ..., pns, pvT, ET, BT, pef)?
is not positive definite. Applying the existence results of section[4]to this formu-
lation would nevertheless be possible by considering the modified mathematical
entropy —ps +eoE-E + #—1oB-B.

The formulation (2.23) is at first appealing, since in the absence of exter-
nal force g = 0, the equations are fully conservative. However, this is of no
use since the resulting full coupled system still contain source terms in the
Maxwell-Ampere equation (2.15). These source terms even involve the solution
gradients through the conduction current density 3. In addition, the correspond-
ing calculations of symmetrized forms are very intricate and complex, but the
mathematical structure of the resulting system is identical to that of the third
formulation (2.24). Moreover, the corresponding partial normal forms coincide
with those of the third formulation (2.24) and lead to the same existence results.

The presented formulation is therefore the third one corresponding to the
intermediate form (2.24). The Hessian of the natural entropy —ps with respect
to the corresponding conservative variable (p1, . .., pns, pvT, ET, BT, pet)T is pos-
itive definite and the calculations of symmetrized forms are not so complicated
as for the second formulation because the equations are less coupled. And by
abuse of language, we describe the variables py, pv, pet, E and B as the con-
servative variables even if the system written in term of these variables is not
into a full conservative form.

12
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3 Quasilinear Form

In this section, we rewrite the system of equations governing reactive ionized
magnetized dissipative plasmas as a quasilinear system of second-order partial
differential equations in terms of the conservative variable U.

3.1 Vector Notations

In this section, we introduce a compact notation that will be used throughout
this paper. We define the conservative variable U by

U= (QT,va,ET,BT,pet)T, (3.1)
and the natural variable Z by
Z— (QT,'UT,ET,BT,T)T. (3.2)

The components of U naturally appear in the system of partial differential equa-
tions governing ionized magnetized gas mixtures. On the other hand, the com-
ponents of the natural variable Z are more practical to use in actual calculations
of differential identities.

The conservation equations can be written in the compact form

U+ oF + > oF= =i, (3.3)

ice ice
where € denotes the set {1,2,3}, F;, i € €, the convective flux in the i*! direction,
Fdiss i € ¢, the dissipative flux in the i*! direction and 7 the source term. The
exponent j is used here to indicate that the source term depends on the macro-
scopic gradients throw the current density j, because of the Maxwell-Ampere

equation (2.15). From the conservation equations (2.1)—(2.3) and Maxwell’s
equations (2.13) it is easily obtained that the source term Q7 is given by

. T
v = (mlwl,,,,7mn3wns,(pg+qE—FJAB)T,—%JT’OLg,pg"v) ’ (34)
the convective flux F; by
. T
Fi = (QTUm pvTv; + pe;’, —ﬁ(ei/\B)Ta (enE)", (pe' + p)vi + B) ,  (35)

and the dissipative flux F1s by

Filiss = FUT 4 e, (3.6)
where FY5¢, the viscous flux, and Fz-diﬂ, the diffusion flux, are defined by
FY¢ = (01,p, IT;, 01,3, 01,3, IT;v) " (3.7)
and T
PO — (Fuis oo Foeis 010,013,013, Qs ) (3.8)

For notational convenience, we have denoted by IT; the i*? rows extracted from
the stress tensor IT and by e;, i € €, the canonical basis vectors of R3.

13
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3.2 The map Z+— U

In order to express the natural variable Z in terms of the conservative variable
U, we investigate the map Z — U and its range. We introduce the two open
sets Oz and Oy defined by

Oz = (0,00)" xR*xR3xR? % (0, 00)

and )
Ou = {(u;) €R" O g, o e > 0,410 > f(ug)},

where f is the map from (0, oo)ns xR? onto R which reads

n°43
2
1 Z . n°+6 1 n°+9 n’
1= m+
flui) =5 +€o Z ul + — Z ui | + Zuie?.
2 0, ;
Z U 1=n°+4 1=n+7 =1

Proposition 3.1 The map Z — U is a C* diffeomorphism from the open set
Oz onto the open set Oy. Furthermore, Oy is a convexr open set.

Proof From assumption (Thy) on the coefficients ¢, , k € &, we first deduce
that the map Z — U is C* over the domain Oz. Furthermore, it is straightfor-
ward to show that the map is one to one from Oz onto Oy by using the positivity
of the coefficients ¢, i, k € &. The matrix d;U, given in a bloc structure by

Hns,ns OnS,S OnS,S On5,3 Ons,l

veu pl 033 033 031

OzU= |03 033 1 033 031

O3+ 033 033 I  Ozq

el pvT goET H—loBT PCy

where we have introduced the vector ef defined by ef = (e{, ey efls)T, is readily
nonsingular over Oz, thanks to its triangular structure. From the inverse func-
tion theorem, we deduce that the map Z — U is a C*° diffeomorphism onto Oy.
The convexity of Oy is finally a direct consequence of the convexity of f, which
is established by evaluating its second derivative. m

3.3 Quasilinear form

Proposition 3.2 The convective fluzes F;(U), i € €, are C* functions of U €
Ou, the dissipative fluzes F355(U,8,U), i € €, are C* functions of U € Oy
and 8zxU € R¥WH10) 5 e ¢ and the source term 09 (U,35) is a C* function of
U € Oy and j € R3. Moreover, the system of partial differential equations (3.3)
can be rewritten in the form

2V + > AU +ASU)] 9U = > 9 [Bi;(U) ;U] + Q(U), (3.9)

e i,jEC

14
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where matrices A;(U), AS(U), i € €, B;;(V), 4,5 € €, and vector Q(U) are C*>
functions of U € Oy. Moreover we have

Fliss(U, 9,U) = — Z (Bij(VU+F5(U)), ieg,

jec
Y (U,5) = QU) + > _ AT (U)a,
ie€
Ai(U) = duFi(U),  AS(U) = - auF5(U) —ATYHU), e,
jee

where the matrices Af’Q(U), i € €, are C* functions of U € Oy.

We observe a fundamental difference between neutral and ionized mixtures.
For neutral mixtures, the dissipative terms Fidiss, i € €, are linear combinations
of gradients and the terms Fi, 4,5 € € vanish [3]. For ionized mixtures, the
dissipative terms Fs5, i € €, still involve linear combinations of gradients but
in addition, also contain the zeroth-order terms Fj, 4,7 € €, arising from the
action of macroscopic electromagnetic forces over the ionized species. Moreover
the source term €9 depends not only on U but also on the gradient 8,U through

the conduction current 3 appearing in Maxwell’s equations.

Proof We first remark that it is easier to differentiate with respect to Z than
to U. By using expression of vectors F;, i € &, and assumption (Thy) on
the regularity of specific heats ¢, i, k € &, we immediately obtain that vectors
F.(Z), i € 6, are C™ functions of Z € Oz.

We write Fiiss = FHfT 4 FYise ' ¢ ¢ and we treat the two terms separately,
the first one F31* corresponding to the dissipative term and the second one Fi5¢
to the viscous term. The transport fluxes IT, F, k € & and @ naturally split
into a sum of gradients of the natural variable Z and a sum of zeroth order

terms. In particular the term FUf can be written
diff Bdiff e
R — - (Bij 0,7 + Fij) , (3.10)
jee

where the matrices B?}ff and the vectors F;,

1,7 € €, are defined by
BT — B,B,Bl + (5;; — B;B;)BL + T;;(B)B®, (3.11)

Fic_j = — | BB, Fell 4 (5ij — 3z‘3j)|:cL + Ty (B)FCQ} (E+ ’U/\B)j. (3.12)

The matrices é”, B and B® have the structure

/8\279 On3,3 OnS,S On3,3 /B\z,e

R T 03,ns 033 033 033 031
B® = — Og)ns 03)3 0373 03)3 0371 , RS {H, 1, @} (313)

p O30 033 033 033 031

Beo 013 013 013 Bg,

15
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The coefficients corresponding to ¢ =|| read

@II = D”dr

Bl = D) ( sl L )

Bl, = &l+h)™Dld,

Bl, = %Au + (3 +h)TD) ( gL )
those corresponding to ¢ =1

L T
BL, = Didr,
Bla= DE (o) — D3,

Bo, = (3 +h)"Dyd; — 2°TDyd]

o "o

BL, = QAL + (0D} (st 2

0
T12 (37D, 3O +5°T DY (s +Tr)+ (32 +h)" DY ) ,
and those corresponding to ¢ = ®

BY, = DYd!,
BO. = DY (oot +4r) + D5
o€ o \T? T )

BY, = (31 +h)"DPd! + 2T D, dy

e "o

Bl = 207 + (2 4+h)T Dy (et +-)

+ 7 (=320TDP 5O 4+329T Dy (s +Tr)+ (37 +h) D) %) |
where r = (r1,...,ms)T, h = (h1,...,hps)T, and where we have defined the
n*xn® square matrices Dy, o € {||, L,®}, by (Dg)kl = Dy,prpi, k1 € 6, and

the vectors »° and °, o € {||,L,®}, by s, = p/pr x5, and 25, = p/pr X7,
ke6.

We finally express the vectors Fell, FeL and Fe© by

1
Feo — 1—? [FZO 0113 0173 0173 FSQ}T, o€ {”,J_,@}, (314)

where

Fo' = Dyz,

Fel = Gl+h)"D)lz,

Fot = (25 +h)"Dy z — 297 DYz,

Fo© = (3 +h)'DPz 4+ 297D, 2

o e

where z = (21, ..., 2 ).
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In order to investigate the regularity of Fz-diﬂ(U, 9.U), i € €, we prove that
the matrices B{i(Z) and the vectors F5j(Z), i, j € €, are C* functions of Z € Oz.

Bdiff, j € €, in the form

We can rewrite matrices Bj;", i,

BUf = 5,;B* + BB (Bl — BY) + T;;(B)BC.

By using (Thy) and (Tr1), we immediately obtain that the matrix B* is a C*°
function of Z € Oz, that the matrix Bl — B* reads B2?®,(Z) and that the matrix
B® reads B®,(Z), where ®;(Z) and ®5(Z) are C*° functions of Z € Oz. These
properties imply that the matrices @?}H(Z), 1,7 € €, are C* functions of Z € Oy,
since

BUM(Z) = 6B (2) + B;B;®1(Z) + Ti;(B)®2(2),

thanks to B = BB. Similarly the vectors Ffj, i,j € €, can be rewritten in the
form

F& = — |0;F°t + BiB;(Fel — F*+) + T,;(B)F°® | (E + vaB);.

By using (Thy) and (Tr1), we obtain that the vector F¢1 is a C° function of
Z € Oz, the vector Fell — FeL reads B2®3(Z) and the vector F°© reads B®,(Z),
where ®3(Z) and ®4(Z) are C* functions of Z € Oz. As a consequence we
deduce that the vectors Ficj(Z), 1,j € €, are C* functions of Z € Oz. The two
regularity properties of matrices §?}H and vectors Ff, i,j € €, yields finally
that the diffusive flux Fidiﬂr(Z,af,JZ)7 1 € € is a C*™ function of Z € Oz and
8,7 € R3™+10) and that the matrices 0zF5;, i,5 € €, are C* functions of
Z e Oy.

With regard to F5¢, we write

K2

5
e = =Y By0,Z, with By = kBl +> naBlr. (3.15)
jec a=1

After some algebra, we obtain the following expressions for the matrices @ﬁ,
A€ {diV, m.. '775}7

Ons,ns OnS,B OnS,B OnS,S Ons,l

SA
. Osns Bjj, 033 033 031
Bij = 037713 0313 0373 0313 0371 , A= {diV7 n.. .’175}, (316)
O3, 033 033 033 031
SA
01w v'Bjj, 013 O3 011
with
pdiv
Bijv = eive;,
B?jl),v = 5”]1 + 6j®61' — %ei@)ej,

17
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B2, = 20 T(B) + T(e)) T(B)T(e;) + 2¢,"T(B)e,1,

éij = 2B;B;BeB — %emej +2T(B)e;ze; T(B) — T(B)e;xe; T(B),
B, = —4BB;BoB + BB/l + §;;BaB + BiejoB + B;Boe;,

BY, = —2B,B;T(B) — T(e))T(B)T(e;) — 2¢,"T(B)e; BeB.

To obtain that FY¢(Z,8,Z), i € €, are C*® functions of Z € Oz, 8,Z €
R3(™+10) " we only have to prove that the matrices @Z;SC(ZL i,j € €, are C*
functions of Z € Oz, by using expression (3.15). Assumption (Tri) and ex-
pressions of matrices @fj, i,j € € A € {div,n ...n5} immediately yield that
matrices @;’;SC(Z), i,j € €, are C* functions of Z € Oz, B # 0. To prove that
those matrices are C*° functions of Z € Oz, even at B = 0, we remark that

Bdiv

kB = reizej,
BM 2

mBii, =m [6i;1+ ejoe; — 2e;me;]

772/8\772 =12 [26”1-(3) + T(BZ)T(B)T(EJ) + 2€iTT($)6j]I} s

17,V
773@%37,,—#174@;7;” =3 [—3eize; +2T(B)ejoe; T(B) — T(B)e;ce; T(B)]

+ 14 [BiB; 1+ 6;;BeB + Bie;joB + B;Bee,]
+2(n3 — 214)B;B; BeB,
15B%, = —ns [2B:B; T(B) + T(e) T(B)T(e;) + 26" T(B)e; BaB] .

1],V
By using assumption (Try), in particular that 1, = ¢1(B?), n2 = By (B?), n3 =
B2p3(B?), ns = B%p4(B?), 5 = B3p5(B?) and 2n4 — 13 = B*ps(B?), where
Yo, @ € {1,...,6}, are C*°([0,00),R) functions, we so deduce that matrices
@X;SC(Z), i,j € €, are C* functions of Z € Oz.

Moreover, by using expression (3.4) of vector 9, assumption (Th;) on the
regularity of specific heats ¢, i, k € &, and assumption (Thys) on the regularity
of the rate constant X%, we immediately obtain that vector Q9(Z,j) is a C>
function of Z € Oz and j € R3. After some algebra, we can rewrite Q9 in the
form R

0(Z,5)=2)+>_A*(2)0:2,
ice

where the vector (2 is given by
Q= (miwr, ..., Mppwne, O, 0L 015, pgv)", (3.17)

with

QW =pg+ [¢l+ Y B% (D,g(u—B@B)—D,jT(ﬂs)) (E +vnB),

k,les
1 1
Qp = ——qv - — 3o & (DL‘;B@B+D¢L(H—B®B)+D§3T(B)) (E +vAB),
k,leS
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and matrices K?’Q, 1 € €, have the structure

Ons,ns OnS,B OnS,S OnS,B Onsl

g Azcgg 033 033 033 Ajge
A= (AT, 033 033 033 Alp.|> (3.18)

03,,s 033 033 033 031
O1,ns 01,3 013 013 0

with
R, =~ 2L e} (D04 - of (FD)4)].

Aff}e = —%zT [ DL( +r)ef + Dy % "Q e + DG( +r)e; + Dggei@ ;
Ape =2 el ( pldr ) L@ Df ) + el (D5
E\fge = %z DLU e” + DL( +r)e

D} %€l + DY (% +1)ef — DY % el .

s
4 €; e T

Concerning the regularity of the vector (Z), its expression (3.17) immediately
yields that it is a C*° function of Z € Oz, B # 0, by using assumption (Try).
Moreover, the equalities D5 — Dlll = B2¢5(B?) and D, = B¢, (B?), where
o7 and d)k@l, k,l € &, are C*([0,00),R) functions, imply that the vectors €,
Qp, and consequently Q, are C* functions of Z € Oz. These equalities com-
bining with xi — X” B2 (B?), XY = By (B?), where ¢ and vy are
C>([0,0),R) functions, also yield that the matrices A\f’Q(Z), i€ ¢, are C*
functions of Z € O3.

We then investigate the change of variables Z — U. Matrices A;, Af’Q, 1€ ¢,
and By;, 4,5 € €, read

A; = duF = AauZ, A =A% ayZ, By =B duZ,

where the matrix dyZ is given by

]Ins,ns OnS,S OnS,S OnS,S Ons,l
—%’U®U %H 03,3 03,3 03,1
OuZ = | Oz 03,3 I 03,3 031 |,
03,ns 03,3 03,3 I 03,1
LT _ 1 T _ e pt __1 BT 1
pCo pCo pCo H0pCy pey
with e" = (e},..., el )T and e}, = e, — 21;-1), k € 6. Matrices /E\l =0zF;, i € 6,
are given by
UiHnS,ns 0®€; OnS,S OnS,S Ons,l
viveu + e;orT p (vl 4+ vee;) Ops .3 Ops .3 nRe;
A; = 03, 03,3 03,3 —omT(e) Osq |,
03, 03,3 T(es) 03,3 03,1
’UihpT p(viv + hpei)T —ﬁ(ei/\B)T %(ei/\E)T VipCp

(3.19)
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where We have used ¢, = ¢, + R, r = (r1,...,7)", h? = (A}, ... h2)T and
R =eb +nT, k€ 6.

By using the regularity of matrices Ai, Af’ﬂ, i€ ¢ @ij, 1,7 € €, and OyZ
given in proposition 3.1, we immediately obtain that matrices A;(U), A?’Q(U),
i € ¢ By(U), i,j € € are C* functions of U € Oy. The regularity of the
matrices dyF;, 7, j € €, and A @ , % € €, yields then that the matrices A, i € €,
are C* functions of U € Oy. O

4 Local existence for an abstract system

In this section, we investigate partial symmetrization and partial normal forms
for an abstract second-order quasilinear system. We then use an existence the-
orem of Vol'pert and Hudjaev [6] which applies to the corresponding system.

4.1 Partial Symmetrization and Partial Entropy

Symmetric forms are a fundamental step towards existence results for systems
of partial differential equations, in particular for hyperbolic-parabolic systems
[6, 9, 10]. In the framework of isotropic hyperbolic-parabolic systems, exis-
tence of a conservative symmetric formulation is equivalent to the existence of
a mathematical entropy [11,3,12].

We generalize in this section the notion of symmetrization for hyperbolic-
parabolic systems, to include convective fluxes with weaker symmetry proper-
ties. We introduce two notions and establish the equivalence between them :
partial symmetrization and existence of a partial entropy.

We consider an abstract second-order quasilinear system in the form

1eC* i,jEC*

where U* € Oy-, Oy- is an open convex set of R” , and ¢* = {1,...,d} is the
set of direction indexes of R?. Note that the superscript * is used to distinguish
between the abstract second-order system (4.1) of size n* in R? and the particu-
lar multicomponent reactive magnetized flows system (3.9) of size n°+10 in R3.
We assume that the following properties hold for system (4.1)

(Edp;) The convective fluzes F, i € €*, the Jacobian matrices A5°, i € €, the
dissipation matrices Bf;, i,j € €, and the source term Q* are smooth

functions of the variable U* € Oy-.

We give the definition of a partial symmetric form for the system (4.1).
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Definition 4.1 Assume that V* — U* is a diffeomorphism from Oy« onto Oy-,
and consider the system in the V* wvariable

AoV + 37 [R(VI+RS (V) av = 3 o: [Br (Vo V] + 24 (v),
1eC* i,jEC*
(4.2)
where Ny = Ov-U*, K; = K dy-U* = dv-Fr, A = A2 ov-U", BY; = BY; dv-U*,
QF = Q*. The system (4.2) is said to be of the partial symmetric form if the
matriz coefficients satisfy the following properties.

(S1)  The matriz Ky(V*) is symmetric positive definite for V* € Oy .
(S2)  The matrices ;K*;(V*), 1 € €, are symmetric for V* € Oy-.

(S3)  The matriz B*(V3€) = dijeer E;}(V*){i{j, ¢ € X971 where X971 s
the unit sphere in d dimensions, satisfies X' E*(Vf & X=20, for X €
R™, V* € Oy~ and & € X941,

Properties (S1-S,) are the same as those of neutral mixtures. Property (S3) is
a generalization of the property on dissipative matrices for neutral gases. The
matrix B* is not symmetric in the general but its symmetric part is positive
definite. There is no assumption on the matrices /X\’;e, 1 € €. These assumptions
will be introduced in the following.

We then define the partial entropy function.

Definition 4.2 A real-valued smooth function oc*(U*) defined on a convex set
Oy~ is said to be a partial entropy function for the system (4.1) if the following
properties hold.

(E1)  The function o* is a strictly convex function on Oy~ in the sense that
the Hessian matriz is positive definite on Oy« .

(E2)  There exists real-valued smooth functions q(U*) such that

(BU*O'*) Atzau*q;ﬁ, iEQ*, u* € Oy-.

(E3)  The matriz B*(U5€) = 3, jce- B (U9 (83.07(U9) &5, € € 541,
satisfies XT é*(UfE) X >0, for XeR", U* € Oy- and & € 41,

We then establish the equivalence theorem between conservative partial sym-
metrizability and the existence of a partial entropy function for the system (4.1).

Theorem 4.3 The system (4.1) can be partially symmetrized on the open con-
vex set Oy if and only if the system admits a partial entropy function o* on
Ouy~. In this situation, the symmetrizing variable V* can be expressed in terms
of the gradient of the entropy function o* as V* = (Oy«o*)".
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Proof Assume first that there exists a partial entropy o*, and let V* =
(Bu~0*)T be the symmetrizing variable. The map U* — V* is then a diffeo-
morphism since Oy« is convex and dy-V* = §3.0* is positive definite. We can
thus define the smooth functions

(VY = U*TV* — o*(UY and §F (VY = EXTV* — g5 (U"), i€ c*.
(V9 q; ; q; (U"),

Differentiating these equalities then yields the relations (dy-~o*)T = U* and
(Ov+q;)T = F*, making use of property (Ez). By using properties (Ei-E3), we
obtain that Ay = dy-U* = (9y-V*) ' = (82.0%) " and A} = ov-F = 02.57,
1 € €* so that the matrix K’g is symmetric definite positive and the matrices ;K’;,
i € € are symmetric. Moreover, we directly get from properties (E1-E3) that
the matrices gfj =Bj; (86*0*)71, i,j € €*, are such that property (S3) holds.
Conversely, assume that the system can be partially symmetrized in the
sense of definition [4.1l Since dy«U* and dy-F, i € €* are symmetric and Oy~
is simply connected, there exists 0* and q}, i € €*, define over Oy-, such that
(Ov+0*)T = U* and (dv-q})" = FF, i € €*. We can thus define the functions

o* (U = U*™V* —5*(V") and qf(U") = FFTVF —G5(V¥), i€

Differentiating these identities, and using properties (S1-S3), it is then straight-
forward to establish that ¢* is an entropy with fluxes q;, ¢ € €*, such that
V* = (Oy=0*)T. 0

4.2 Partial normal forms

In this section, we investigate partial normal forms for the abstract system .
We assume that this system satisfies

(Edp,) The system (4.1) admits a partial entropy function o* on the open con-
vex set Oyx.

Introducing the symmetrizing variable V* = (9y~0*)T, the corresponding
partially symmetric system then satisfies properties (S1-S3). Introducing
a new variable W*, associated with a diffeomorphism from Ow- onto Oyx, and
multiplying the conservative partially symmetric form (4.2) on the left side by
the transpose of the matrix dw-V*, we get a new system in the variable W*.

Definition 4.4 Consider a system in partially symmetric form, as in Defini-
tion[4.1, and a diffeomorphism W* +— V* from Ow- onto Oy-. The system in
the new variable W*

AW + 3 (KA ) aw = 3= o (BLow' ) + T +0°,  (43)

icex i,jEC*
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Ay = (Bw-VIT Ay (Bw-V), By, = (dw-VIT B} (dw- V),
A; = (Qw-VHTA (Bw-VH, 0 = (Bw-V)T O,
A= Ow- VYRS 0wV, T == Y 0i0w-V)" B (Ow-V) W,

i,jECT*
satisfy
(S1)  The matriz Ay(W*) is symmetric positive definite for W* € Oy

(S2)  The matrices K: (W), i € €*, are symmetric for W* € Ows-.
(S3)  The matriz B" (W% ¢) =3 B (W9&ig;, € € 91, satisfies

i,jJEC* T

XT B (W%€) X >0, for X e R", W* € Ow- and & € 91,

This system is said to be of the partial normal form if there exists a parti-
tion of {1,...,m*} into 1 = {1,...,n§} and 1 = {ni+1,...,n"}, such that the
following properties hold.

(Nor;) The matrices Ay, A iec, andB

*
137

— (A0 e 0o A — 0 0
Ay = 0 —x% y A = —xe _}cc s B.. = —I1, .
0 ( O AOII,II 7 AZ 11,1 AZ 11,11 ij O BZJII 1I

—*11,11(

(Nory) The matriz B

—*11,11(

X'B

1,7 € €, have the bloc structure

Wieg) = > Eﬂl’“(W*)&{j, £ € Y41 satisfies

i,j€EC TiJ

W5E)X >0, for X e R, X #0, W* € Ow- and &€ € R4 1.

—x

(Nors) We have T (W% 9 W¥) = (f*(wt LW, T (W amvv*)T)

T
» £11 )

where we have used the vector and the matrixz block structure induced bu the
partitioning of {1,...,n"}, so that we have W* = (W}T W*TT for instance.

We then introduce the nullspace invariance and the nullspace consistency
properties which are a sufficient condition for system to be recast into
a partial normal form. These properties generalize the nullspace invariance
property in the case for neutral gases [9, 3].

(Edp;) (nullspace invariance) The nullspace of the symmetric part of the
matriz B*(V1€) = 37, ice- BY;(V9&E;, denoted by N, does not depend
on V* € Oy« and € € 2971, and we denote by nj its dimension.

(Edp,) (nullspace consistency) Denoting by N the nullspace of the symmet-
ric part of the matriz B*(V% ), we have

B # _ R* T\ /¥ _ .. * T A*E [\ /¥ _ . *
Bij(V)N—Bij (VON =0, id,jec’, NAS(VIN=0, iecC"

that is to say gfj (VHX = 0, XTE’{J-(V*) =0, and YIAL(VIX = 0 for
X, Y € N.
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In the following of this section, we assume that these properties holds. In
order to characterize more easily partial normal forms for partial symmetric
systems satisfying the nullspace consistency property, we introduce the auxil-
iary variables U* and V*, depending linearly on U* and V*, respectively. The
dissipation matrices corresponding to these auxiliary variables have nonzero co-
efficients only in the lower right bloc of size n*—n, and moreover, the Jacobian
matrices z@;c’ , © € €, have zero coeflicients in the upper left bloc of size ng.
Partial normal forms are then equivalently — and more easily — obtained from
the V* symmetric equation.

Lemma 4.5 Consider a system (4.2) that is partial symmetric in the sense
of definition [{.1, Denote by o* the associated partial entropy function and by
V* = (Oy~0*)T the partial symmetrizing variable, and assume that the nullspace
consistency property is satisfied over Oy~. Further consider any constant non-
singular matriz P of dimension n*, such that its first ng columns span the

nullspace N. Then the auziliary variable U* = PTU* satisfies the equation
U7+ )" (AR 0,0 = Y 9; (Bo;U7) + 97, (4.4)
icex i,jEC*

where Ay = PTAS(PT)~1, A = PTA®(PT)~!, By = P™B};(P")~", and Q¥
PTQ*. The corresponding partial entropy is then the functional o*' (U*) =
o*((PT)=tU*), and the associated partial entropic variable V*' = (Oy-a*')T is
given by V¥ = P7IV* and satisfies the equation

oV + Y (AR OV = Y 9Bl V) + O, (4.5)
icer ijeex
where KB’ = PTAT)P, Kt/ = PTA*;-R 'f&;e/ = PTATR é:; = PTéij, and O =

i € €%, and B},

~ 0 'K\*_ell,ll ~. 0 0
Az’ = <K*.C/H’I N*lzc/n,n> ) Biﬂ{ = (O é:;II’H) ’ (4'6)

K2 K2

PTQ*. In particular, the matrices Ace!

i i,7 € € are in the
form

and the matriz E*’H*H(V*’,E) = Dijeer éz;H’H(V*’)&{j, & € X471 satisfies
XTB*II(V* €)X > 0, for X € R" =15, X £ 0, V¥ € Oy and &€ € 241,
Finally, the partial normal form is equivalently obtained by multiplying

the V* equation (4.2) by (Ow+V*)T or the V¥ equation (4.5) by (dw-V*')T.

Proof Equation (4.4) is easily established by multiplying (4.1) on the left by
PT. This also yields the matrix relations A5 = PTA:(PT)~1, At = PTA®(PT)~ 1,
By = P™Bj;(PT)~!, and Q* = PTQ*. It is also easily checked that the functional
o*(U*) = o*((PT)~1U") is the corresponding partial entropy. From the defi-
nition V* = (dy~o*')T and the chain rule, we then get that V*' = P71V* and
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4.5) is obtained as in (4.1)—(4.2). Since B* = PTB*P and the first ng columns
of P span N, we next deduce that B* is in the form

~. 0 0
BY = <0 §*111,11> )

and similarly, all matrices gj; , 1,7 € € and A*;-e' , 1 € € are also in the form
4.6). Moreover, the matrix B*™1(V* £), satisfies XT B0 (V*, €)X > 0, for
X eR" M, X #£0, V¥ € Oy and € € 291 since the n*—ng last columns of

P span a subspace complementary to N. O

Normal forms for partial symmetrizable systems satisfying the nullspace con-
sistency property are now completely characterized in the following theorem, in
terms of the auxiliary variables U* and V*'.

Theorem 4.6 Keeping the assumptions and notations of Lemmal4.5, any par-
tial normal form of the system is given by a change of variables in the
form

W* = ((U7), éu (Vi) (4.7)
where ¢y, and ¢y are two diffeomorphisms of R™ and R™ ~"0 , respectively. Fur-
thermore, we have

T (W3 0aW") = (0,77 (W 02 W) ).

Proof The proof is exactly the same as in [3] for neutral gases, with the same
notation. We only have to be investigate the matrices K:e which vanish for

—*

neutral gases, but the treatment is the same as for the matrices B;;, using the
block structure . a]

4.3 An existence theorem in V;(R%)

The abstract system of second order partial differential equation (4.1) rewritten
in the partial normal form can be split into a hyperbolic subsystem and a
parabolic subsystem

Ay oWy ==Y A oW 4T,

ic¢*
Ao o == 30 (AR w3 o (B o,wh) + T
ieC* i,jEC*
(4.8)
where
— —x NPV E— o TF ok ——*ell Il ——*IL,II *
Iy = - Z (A, T+A O, Ty =0, +7, - Z (A, T +A; )W
eC* iceC*
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We then consider the Cauchy problem for the system (4.8) with initial con-
ditions
W (0,2) = WO (z), Wi (0,2) = Wi’ (). (4.9)

These equations are considered in the strip Qe where © is positive and Q; =
(0,t)xR4, for t > 0. The unknown vectors W, and W;* are assumed to be in
the convex open sets Ow:- C R™ and Ow: C R™ ",

We will use the classical functional spaces L,(R?) with norm

)

1/p
o0, = ([ 1ol ar) " i1 <p< oo and Toly. = suploto)
the Sobolev spaces Wé(Rd), 1 < p < o0, with norm

lol, = D 18y 16, = D 10,

ke[o,1] 18|=k

and the Vol'Pert spaces V;(R?) with norm [6]

||¢||l = |¢|o,oo+ Z |¢|k,2'

ke[1,1]

We extend these definitions to vector functions by using the Euclidean norm of
R?. According to the Sobolev inequalities, there is an embedding of W£(R) into
WE (RY) for | > k + d/2 and an embedding of W}(R?) into V;(R?) for [ > d/2.

In the following, £ denotes an arbitrary fixed positive continuous convex
function, on the open convex set Ow: = Ow:xOw; , which grows without
bound as any finite point of the boundary of Ow~ is approached.

The following theorem of Vol'pert and Hudjaev [6] shows that, in a cer-
tain strip, there exists a solution which preserves the smoothness of the initial
condition.

Theorem 4.7 Suppose that the system (4.8)-(4.9) satisfies the following as-
sumptions where | denotes an integer such that | > d/2 + 3.

(Ex1) The initial conditions W;°, W}0 satisfy sup,cpa L(W;(z), W0 (z)) <
+o00 and W0 and W;0 are in the space Vi(R?).

(Ex2) The matriz coefficients K;I’I, KSILH, 1€ ¢¥, g:;’n, i, € € depend only
on W and on W;. The matriz coefficients K:I’I, K:H’I, K:CIM, ie¢r
and the vector coefficients T, , fl*l depend on W, W and on 0;W.

(Ex3) The matriz coefficients K;I’I(wl,wn), K;H’H(wl,wu) and §Z—I’H(w1,wn),
i,j € €, have continuous derivative of order I with respect to w; € Ows
and wy € Ow: .
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—%I1,1

(Exq) The matriz coefficients K:I’I(wl,wu,f), A, (wr, w, €), K:CH’I(wI,wH,g),
i € €, and the vector coefficients T, (wy, wy, &) and Ty (w;, wy, &) have
continuous derivative of order | with respect to wy € Ows, wy € Ows
and € € R¥X (W —ng)

(Exs) The matriz coefficients K;I’I(w[,w“) and K:;H’H(w[,wu) are symmetric

and positive definite for w; € Owx and wy € Ows: .

(Ex¢) The matriz coefficients A, (w;,wy, &), i € €, are symmetric for w, €
Ow;, wy € Ow: and & € Rax (7" —ng)

(Ex7)  The matrices Ay (wi, wy), Ay (wi,wy) and the vectors T, (w;, wy, 0)

and f;(wl, wi, 0) have continuous derivatives to order 1+ 3 in w; € OW‘*
and wy € Ow: .

(Exg) For any compact subset K of Ow- = Ow:xOw:, there exists a > 0 such
that for any smooth function w = (wy, wy) from R? to R™ with value in

K we have
Y (@i6n)" By M (w(@) Qi) dz = a [ X (i6n)T (Bid) da,
R4 4, jeC* Rd jeC*

(4.10)
where ¢y is any function in Wa(R?) with n*—n}; components.

Then there exists to, 0 < tg < O, such that the Cauchy problem (4.8)), (4.9),
admits a unique solution (W*T WiTT defined on Qi, = [0,to] xR?, which is
continuous with its derivatives of first order in t and second order in x, and for
which the following quantities are finite

sup (W (0, W ()], sup LA, W), (a.11)
0<t<to o
fo 2 2
swp [0 Oy [ (W1, + WD) dr. (112)
0<t<to 0

Moreover, either to = ©, or there exists t1 such that the theorem is true for
any to < t1 and such that for to — t1, at least one of the quantities

W (o)l 00 + Wi (F0) 2,000 SUP LW, W), (4.13)

to

grows without bound, that is to say, the solution can be extended as long as
quantities (4.13) remain finite.

5 Existence theorem for multicomponent mag-
netized mixtures

We now apply the general results of section [4] to the system of equations gov-
erning multicomponent ionized magnetized reactive flows (3.9).
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5.1 Partial Symmetrization

For ionized magnetized mixtures, the existence of an entropy function only yields
partial symmetrization of the system, because of the terms F7, 4,7 € €, which
prevent full symmetrization. Nevertheless, the achieved symmetrization will be
sufficient to establish existence of a solution.

Let us first introduce the mathematical entropy function ¢ as the opposite

of the physical entropy per unit volume. Its expression is given by
1
U:_Zpksk :_T Zpk(hk—gk). (51)
k€S k€&

We prove in this subsection that ¢ is a C* strictly convex function on the
convex open set Oy. It seems then judicious to consider the map U — V =

(Byo)T.

Proposition 5.1 The function o defined on Oy to R is a C*> strictly convex
function, in the sense that its Hessian matriz 860 s symmetric positive definite.

Proof From assumption (Thi) on the coefficients ¢, 1, k € &, o is a C®
function. The differential of o is

_Po
do = —=22dT — > (56— m)dpx,
ke®

so that

pc,
070 = (7°1 — 81,y s — 8ps,01,3,013,01,3, — T )

We then obtain dyo = 9z00yZ and 3o = 97(dyo)TOZ :

1
Oyo = T (91 — %vwv, ey Gns — %v-v,vT,soET, #—10BT,—1) ,

-dr+U2U®U+ e"®e”  _ u®w e’ Qu c0e'QF Q@B e
4 pT pcy T2 pT " pcyT? pcy T2 popcyT? pcyT?
_v®u+ v e’ v QU _'_L gV QE v®B v
pT T pc,T? pcyT2 1 pT pcy T2 popcyT? pcy T2
860.: cg E®e” 0 EQv 58E®E+50H3 c0E®B _ _eE
pcyT? pcyT? pcyT? T popcyT? pcyT? )
BR®e" B®v e0BRE B®B I3
popcyT? popcyT? popcyT? pipcyT2 ' poT popcyT?
T T egET BT 1
L T pcuT? T pcT? _pc(')sz T popcoT? pcy T2

where dj is the n* by n’ diagonal matrix defined by dj = diag((mx/px)res) and
e =(el,....e5)T, e}, =exr — 300, k€S,

The matrix 860 is clearly symmetric. We now prove that it is positive
definite. Let be X = (x,7, x0T, X5 T, X5 T, x1)T. After some algebra, X 9§o X can
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be written in the form

1 1
X' 9o X =X, dpxp + E—OXE-XE + ——=XgXg + —= (X — XU V) (Xp — XpU V)

T wol’ pT
1 r 1 B 2
+W e Xy + V- Xy +50E-XE+E Xg — Xr
so that the Hessian matrix 2o is positive definite. O
We then introduce the partial entropic variables V by
1 1 1 T T 1 T T
V= T(gl — 5V, gy — 500,V ,60F ’RB ,—1) ) (5.2)

Proposition 5.2 The map U — V is a C* diffeomorphism from the open set
Oy onto the open set Oy = R™ T9x(—o0,0).

Proof For proposition we have to prove that the map Z — V is a C™
diffeomorphism from Oz onto Oy. It is C* for assumption (Thy) on the coeffi-
cients ¢, x, k € &. For assumption (Thy), positivity of ¢, i, k € & yields that
the map Z — V is one to one. We now prove that the map is onto. Let be
V € Oy, we define

1 Vy 1 V3 Vs
Zs = —— Zy=—po—r, Zy=——22 Z,=_"2
5 V5, 4 /1/0\/57 3 o V5, 2 V5,
Vig— st sty V4V 1 [V
71 = mk")/St exp 1k~ Tetsp e Vs VaVy L= Coo(T) (% +V5) ar|
Tk 2T7gv5 Tk Tst

for k € G. The range of the vector Z so defined is then V. We now give the
expression of the matrix 0zV.

dy —%1U®v Ons 3 Ops 3 —Tifer
Ogﬁns T]I 0373 0313 —ﬁv
OV = |03 O35 2RI 035 —2%E |. (5.3)

1 1
Ogﬁns 0313 0373 #OTH —#O—J?QB
O1,,s 013 013 013 T

07V is then an bloc upper triangular matrix and these diagonal terms are posi-
tive for assumption (Thy). From the inverse function theorem, we deduce that
the map Z — V is a C* diffeomorphism onto Oy. O

We then investigate the symmetry properties of the system of partial dif-
ferential equations governing multicomponent magnetized reactive flows. We
obtain in particular a partial symmetrized form of this system, making use of
entropic variables.
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Theorem 5.3 The function o is a partial entropy function for the system (3.9).
Furthermore, the change of variables U — V transforms the system (3.9) into

VoV +3 (AV) +R(V)) oV = 37 0, (By(V)av) +9(v),  (5.4)

ieC i,jEC

with Ay = WU, A; = AU, Ac = A°8VU BJ = Bj;ovU, Q = Q, where
matrices Ag(V), Ai(V), AC(V), i€ C, B” (V), i,j € €, and vector Q(V) are C>
functions. Moreover, the system is of the partial symmetric form, that is,
the matrices KO, A, i €€, and éij, i,j € €, verify properties (S1-S3).

Proof [3.2]In order to evaluate the matrices /X\o, KZ-, Kf, 1 € €, and ’L5>1-j, i,j € €,
we use notations defining in the proof of the proposition [3.2/and concerning the
system written in the natural variable Z,

PodZ+ Y (A +AHZ =Y 0:(Bi0;2) +
ic¢ i,j€C
These matrices are indeed easily calculated by using the natural variable Z and
the relations AO =0zUNZ, A; = A, iOVZ, Ae Ae(?VZ and BU = BU(?VZ where
the matrix OyZ reads

d? veov 0Ops 3 Ops 3 de*
Ogms TT 0373 0313 Tv
HNZ= |03n 033 LI 033 TE|, (5.5)
037,”5 0373 0373 /L()TH TB
01+ 013 013 013 T2

with d¢ the »° by n® diagonal matrix defined by d?¢ = diag((pr/7)res) and v@
the vector given by v¢ = d%u = ((px /7 )kes )’
The matrix Ay can be written in the form

de ve@u Ops3 Ops 3 deef
N pTI+ Y000 0p3 Ope 3 (pT + Xc)v
Ay = I1 033 TE , (5.6)
Tul  TB
Sym T

where we have defined ¥, = u’d¢u, ¥, = u'd2e’ and Y. = efTd%!+ pTv-v +
pc,T? + 2T pe®. Since this matrix is symmetric, we only give its right upper
triangular part and write “Sym” in the lower triangular part. The matrix Ag
is positive definite since for any vector X € R t10 written in the form X =

(X.QT7 XvT7 XETa XBTa XT)T7
Xt ;&0 X = pchzx2 + (xE + eoxr B)"-(xg + coxr E)
+pT (% + XT'U)-(XU +x720) + poT (x5 + thB)T(xB + H—loxTB)

(X + X -vU 4 x7€")TdE(x, + Xp-vu + xpe).
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Denoting by & = (&1,£2,&)T an arbitrary vector of R?, the matrices Ai,
1 € €, are given by

dov-§ v-&vlev + T Opsz  Opsj3 d¢hPv-&
pT (v-(l+vef+Esv) 0 0 (Ep+pT)v-Ev
YA R I )
Gt — T 1 3
2 0s5 ~LT(€) —L-TBn¢
03)3 —TE/\S
Sym Ypv-€+2T P-¢
(5.7)
with ¥, = uTd?h? and T, = hPTd?hP + pTw-v + pe, T2
Concerning the matrices A, ¢ € €, we have
AT == 0F vz — AT, (5.8)
jee
where the matrices /X\E’Q, i € ¢, read
Ons7ns Ons73 077,3,3 Ons73 Ons)l
o Aspod? Alpveev Oy Opy T2ATY, + AT deer
AT = | ATp de ATp Veev 033 033 T2ATp  +ATh deer|, i€C.
03, 03,3 03,3 033 03,1
01,n 01,3 01,3 013 01,1
(5.9)

Using the form of matrices @ij, 1,7 € €, we classically decompose dissipation

matrices By, 7,5 € €, into diffusion and viscous matrices, EZ—J— = E?}H + fé;’;“,
i,j € €. Denoting by & = (£1,£2,&3)T and ¢ = ({1, (2, (3)" arbitrary vectors of

R3, diffusion matrices, B?;H, i,7j € €, are given by

> Blifg; =BEBL Bl 4+ (£¢ - BEBC) B+ £"T(B)C B, (5.10)

i,jEC
with
EZ;Q OnS,S OnS,B OnS,S Ez,e
7 |03 033 033 033 03
B® = E 03)713 03)3 0373 03)3 0371 , o€ {H, 1, @}. (511)

03,2 03,3 033 033 033
< <
Bep, 013 013 013 Bge

Coefficients with ¢ =|| read
Bl.=DJ, Bl.=D/GI+h), Bl,=E+n)"D),
Bl. = pTAl + &' +0)" D) (" +h),
those with o =1
Beo=D;, Bpe=Dy (s +h)—Dx%, B, = +h)'Df —z°'DY,

B = pTX" + (57 4h)" D) (s +h) =207 D} 5° = 2T DY (3¢ +h)— (57 +h) D 5°,
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and those with o = ®

B, = DF. Bg.= D" +h)+ DLx®, BY, = (2 +h)'Df + 27D
BY. = pTX° + (57 +h)"' D (s +h) — 29T DY 5 + 20T D (s +h)+ (3 +h) D} 5.
We then observe that the matrices E?}H,
properties (gﬁﬁ)T = E?;H, i,j € €, because the matrices B+ and B® have no
symmetry properties as soon as the magnetic field is not null.

Viscous matrices B7*, i, j € €, are given by

i,j € €, do not satisfy the symmetry

5
> BIGG = kBW(E,Q) + ) naB™ (€,0), (5.12)
i,j€C a=1
with
Ons,ns _ OnS,B 077:*‘,3 OnS,S _ On3,1
- O3,ns Bﬁ (57 C) 03,3 03,3 Bﬁ (57 C)’U
B4 (£,¢) = | 03, 03,3 033 033 03,1 , (5.13)
03, s 033 03,3 033 03
01 v™BL(E,¢) 013 013 v™BL(E,¢)v
for A € {div,n,a =1,...,5}. Expressions of these matrices are then
Blv(€,¢) = T €,
B (£,¢) = T[€-CT+ Caé — 2€a(],
BI2(€,¢) = T[26CT(B) + T(6)T(B)T(C) + 26" T(B)CT],
B (€,¢) = T[2B-£ B-L BB — 2€a( + 2T(B)CaET(B) — T(B)EalT(B)],
B (£,¢) = T[B-£ B-L(I — 4BoB) + £-¢ BaB + B-£ (9B + B-L Bet],
BIP(£,¢) = T[—2B-E BLT(B) — T(€)T(B)T(C) — 26"T(B)¢ BeB].

The matrices §£S<?, i,j € €, do not satisfy the symmetry properties (é;’;bC)T =
fé}’%sc, because the matrices §§7 A € {div,n., a =1,...,5}, are not symmetric.

We consider the vector X = (x,7, %7, %7, x5, x7)T € R"” 10, Defining the
matrix B4 (¢) = dijee B?jiﬁ&fj, we obtain, after some algebra

XBIMEX = 2 ((BHAlxx) + (1 - (BEHA'RH),  (14)

where we have use notations of (Tr3) for matrices Al and A+, and we have
introduced the vector X = (pxr, (x, + xrh)Td?)", with d¢ the n® by n® diagonal
matrix defined by d¢ = diag(p1, ..., pns). Using assumption (Trs3) give us then

the property XTBUf(£)X > 0, for & € ¥2.
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Defining the matrix BVs¢(¢) = 37
bra

ijee B;’;S‘fifj, we obtain, after some alge-

FXB ()X =h(€%0)? + (m+m) [€BXy+%,BE"| - [£Bx,+%,Be'|

g gz, — 2€ 1)) + (g [(€1%D)PH(E %)Y
(5.15)

with X, = Xy +x,v. Using assumption (Trp) yields the property XTBYis¢(£)X >
0, for & € X2,

Finally, we immediately obtain that matrices AO(V)7 KZ-(V), 1 € ¢, ’éij V),
i,j € €, and vectors |~:ch V), i,j € €, SNQ(V) are C* functions by using the C*°
diffeomorphism U — V and the proposition [3.2l m

5.2 Partial normal variable

In this section, we investigate partial normal form for system (3.9). We first
establish the nullspace consistency property.

Lemma 5.4 The nullspace of the symmetric part of the matrix g(V,é) =
Zi,je@ Bi; (V)&&;, denoted by N, does not depend on V € Oy and € € X2, and
we denote by ng its dimension. This nullspace is spanned by the column vectors
(u",01.10)" and E"+k k=1,...,6, where (Ek)k:1 ns410 18 the canonical basis
of R" 10 Fyrthermore, we have

Bij(VIN =B,T(VIN =0, i,je€ NTAS(V)N =0, iccC.

Proof Using assumptions (Trp-Tr3), expressions (5.14) of XTédiﬂ(E)X and
5.15) of XTBYise(£)X yield that XTB(£)X = 0 if and only if x, = 0, if x,
is proportional to the vector u, and if §~xl|, =€xt = £x0 = €Bxlixt =
Xo-BEL-£L = 0. As these last relations are equivalent to x, = 0, we deduce
that N does not depend on V € Oy and £ € X2 and is spanned by the col-
umn vectors (uT,0110)" and E® T* k= 1,...,6. It is then easily checked that
ﬁij (V)N = B;;"(V)N =0, 4, j € €. Moreover, by using assumption (Try) on the
nullspace of the matrices All, AL and A®, the expression of the vectors
F, 4,5 € €, yields that NTFf; = 0, so that NT0zFf; = 0, as N is independent on
V € Oy. By using expression (5.9), we immediately obtain that XTZ\?’QY =0,
for X,Y € N. Expression (5.8) then yields that XTRQY =0, for X,Y € N. o

33



V. Giovangigli, B. Graille R.I. N° 532

Making use of the explicit basis of N, we define the matrix P from

1 01,3 01,3 01, -1 01,3 0

U Ops—13 Ops—13 Tps—1ms—1 Ops—1,3 Ops—11

03,1 033 03,3 03,51 I 03,1
S * * * 5.16

03,1 I 03,3 03,m5 —1 03,3 03,1 (5.16)

03,1 033 I 03,m5 —1 03,3 03,1

01,1 013 01,3 01, -1 01,3 1

with @ the vector of size n°—1 defined by t = (1,...,1)T. We may then introduce
the auxiliary variable U’ = PTU and the corresponding partial entropic variable
V' = P~V given by

U = (p, E", B", 5", pv™, pe")",
with § = (pa, ..., pns)T, and

1 T
V= T (gl - %,U"U7‘€0ET7 tBTagQ — 915+ 9ns — glavTa _1) .

From theorem (4.6, normal variables are in the form W = (3;(U]), ¢ (V}]))7,

where Uj is the first seven components of U’ and V|, the last n° + 3 components

of V'. For convenience, we choose the variable W given by

™ s T
W = (p,ET,BT,log p—i, ..., log p,:; ,vT,T> ) (5.17)
P1 P1

Proposition 5.5 The map V — W is a C* diffeomorphism from the open set
Oy onto the open set Ow = (0, 00)xRExR™ ~1xR3x (0, 00).

Proof For propositions and we have to prove that the map Z — W is
a C* diffeomorphism. It is readily C* and we describe now its range. Let be
W e OW We then define Zns_;,_lo = Wn3+10, Zns_;,_ﬁ_;,_u = W4+H’ Zn5+3+u = W1+H7
Zpspp = Waes 1640, 0 € [1,3], Z1 by the following equation

Zy + Z Z?m exp(Wetx /1) = Wi,
k=2

which admits a unique positive solution and Z;, = (Z}' expWs.1)"/™, 2 < k <
n®. A direct calculation yields the expression of matrix dzW,

1 a’ 01,3 01,6 01,1
061 Ogne—1  Ogs Is,6 06,1

OW = |—7a —dj Ow-13 On—16 Ow-11], (5.18)
031 O3s—1 I3 03,6 03,1

01,1 Opps—1 O13 01,6 1
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with a; the n°—1 by n°—1 diagonal matrix given by a; = diag(ra/pa, .- Tns [ Prs)-
This matrix is non singular and it’s invert is given by

Eip’;—l 01,6 —ELPZ—WE’T 01,3 01,1
2%\75 Ops—1,6 df — Eipvr"@\vlf Ons—1,3 Ops—1,1
WZ=1031 Os6 03,ns—1 I3 3 031 | (5.19)
06,1 s 06,ms —1 06,3 06,1
01,1 O16 01,ms—1 01,3 1
with V¢ = (p2/m, ..., pns /Tns)T. From the inverse function theorem, we deduce
that the map Z — W is a C*° diffeomorphism onto Ow. O

In order to separate the hyperbolic and the parabolic variables, we introduce
the partitioning of {1,...,7°+10} into1={1,...,no} and 11 = {ng+1,...,n°+
10}, with ng = 7, and we use the vector and matrix block structure induced by
this partitioning. We have in particular W = (W, W,;T)?, where W, corresponds
to the hyperbolic variables and W,; to the parabolic variables,

'rg TS T
W, = (p7ET,BT)T, W, = (log =2 ... log Pre vT,T> ) (5.20)
P1 2y

Theorem 5.6 The change of variables V. — W transforms the system (5.4)
mnto

RodW + 3 (Rt A, ) W = 3 0 (BiyosW) + T + 0, (5.21)
e i,j€C
with
Ao = (dwV)" Ao (O Bij = (V)" By; (dwV),

V)
A; = (W) A; (BwV), =WV,
A; = (V)" AS (dwV)

€

where matrices Ag(W), A;(W), A;(W), i € €, B;j(W), i,j € €, and vectors
QW), T(W,8:W) are C* functions of W € Ow and d;W € R3+10) - [y
thermore, the system (5.21) is of the partial normal form, that is the matrices
Ao, A;, i€, Bij, 4,7 € €, and vector T satisfy property (Nori-Nors).

Proof The proof of this theorem is only a direct application of theorem [4.6] 4.6
We then give expressions for the matrices Ao, A;, i €€, BZJ7 ,j € €. The blocs
of the matrix Ag read

1 b -~ -~
5, Oz Ou3 de — %pv?@vrg Ons—1.3 Ops_11
—LI —II,II
4 c o
AO - TO]I3 03 3 ’ AO — %]13 03)1
pc
Sym #OTHB Sym TZU

(5.22)
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Denoting by &€ = (£1,&9,&3)T, an arbitrary vector of R?, matrices A;, i € €, are
given by

_% 01,3 01,3 01,ns—1 E%éT 011 |
0373 _MLTT(é) 03,n371 0313 0371
Zﬂf. _ 03,3 O3 03,3 03,1
= (d2— &-V2eVf)v-§ fob—LVPet Op 11|’
o I
[Sym LCoy.¢ |
(5.23)

with § = (pa,..., pns) T . .
With regard to E-j, we use the split of B;; to write Eij = Ej;ﬂ + EZ;SC,
i,j € €. Denoting by & = (£1,£2,&3)T and ¢ = ({1, (2, (3)T arbitrary vectors of

. . . Sdiff .. .
R3, diffusion matrices Bi; ,14,j € €, are given by

—diff = =1 =0
> Bl &G =BEBCB +(6¢-BEBLB +£T(B)KB,  (5.24)
i,jec
where the matrices §H, B" and B have the block structure of property (Nory).
An explicit calculation also yields

— e

—oan T BQ;Q Ons—1,3 Bg,e

B = E 03,?:—1 03,3 %1 , oe{],L, o} (5.25)
Eexg 01)3 Be7e

where coefficients with ¢ =|| read

T 7T
B,,=1D/T",
B —ipl(Li it
o — o (725 +71),

those with ¢ =1

B,,=1D,1,

B, =1 [Dj (2o +4r) — & DPx0],
By = [(=5 440D} — 2 27TDP] T,
Boe = BN + (3 4 A0 DL (fr e +41)

— F(ZOTDS 3O+ ZOTDY (s +Tr)+ (32 +Tr)" DY %),
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and those with o = ®

B, =IDYT",

By = 1 [DS (s +4r) + 2D 0],
Be, = [(£=5 +40TDY + &= TDH T,
Boe = X7 + (232 4+ 50T DO (et + A1)

T 2
+ gr (= 2VTDP O+ 20T D, (e Tr)+ (3 +T) Dy 29),

where we have introduce I, the n°—1 by n® rectangular matrix defined by blocks
by I = [0ps—1,1 Lns—1,e—1]-

Viscous matrices B, % , 1,7 € €, are given by
—di L
3B = B0+ D B (E,€), (5.26)
i,j€C a=1
with
A 1 Ops—1,m5—1 0£8—1,3 Ops—1,1
B (€0 =% | Osw1 B (&C) 031 | (5.27)
O1,ms—1 01,3 0

for A € {div,n4,1 < a < 5}. Expressions of these matrices are then

UUI

e

= &a(,
£-CI+ ¢wt — 2€a¢,

=26CT(B) + T(E)T(B)T(C) + 26" T(B)C,

=2B-{ B-( BB — 2€0¢ + 2T(B)(ET(B) — T(B)Ea(T(B),
BEBC(l - 4BaB) + £-¢CBeB + B-£(aB + B-¢ Bek,
—2B-£ B-LT(B) — T()T(B)T(¢) — 26" T(B)¢ Bo'B.

1

S DY N DY Yy DY

)
)=
)=
)=
)=
)=

W W w w
e3elezezes
™o

_ Finally, we immediately obtain that the matrices Ao(W),A; (W), A, i € €,
Bi;j (W), i,j € €, and the vectors Q(W), T (W, 8,W) are C* functions by using
the C* diffeomorphism V — W and the proposition [5.3| 8]

Proposition 5.7 According to the hyperbolic variables W, and the parabolic
variables Wy, we can then split system (5.21) into hyperbolic and parabolic parts,

Ay W, =—> A oW, +T,

ieC (5 28)
H i 8tWH _ Z (K;II cII 1) 9 WI i Z 8 (BH 118 WH) +fn7 .
e i,j€EC
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where

CII o —II,II

T, = ﬁl - Z(K:I . AI H)VVH, F11 = QII + T Z A )VVII
ic¢ icl

—I1,11 —I,1

]\4“0171’601)61’ the matrices KBI(W) Ay (W), AT (W), A (W), A, (W), i € ¢,

B, (W), 4,7 € €, are C* functions of W € Ow, and the vectors T'1(W, 85W,),

v

fu(W, W) are C* functions of W € Ow and 8,W,; € R3(+3)

11,1 ell,1

Proof It is a direct application of theorem [5.6l 8]

5.3 Existence theorem

We now apply Theorem [4.7] to the system modeling multicomponent reactive
magnetized flows.

Theorem 5.8 (Local Existence) Consider the Cauchy problem for the sys-
tem (5.28) in R3

Ay W, =—> A oW, +T,
icl

o e _ (528
11 11 8tWH _ Z (Aill 11, 1) (9 WI 4 Z (9 (BII H8 WH) I FH,
i€ i,jEC
with initial conditions
W(0,z) = W°(z), = €R? (5.29)

where WY € V;(R?), infgs p° > 0 and infgs T° > 0.

Then there exits to > 0, such that (5.28), (5.29) admit an unique solution
W = (WS, WyDT with W(t,z) € Ow defined on the strip Qu, = [0,to]xR3,
continuous in Qy, with its derivatives of first order in t and second order in x,
and for which the following inequalities hold :

o
P

log t
P ®)

sup [np(wul s
k=2

T ;@ (l @l +1E: D1+ B (@®)],) + ||T(t)||l} < 400,

0<t<to
inf p(t,z) > 0, inf T'(¢t,z) > 0,
Qtg Qtg
sup_ (100011 + 5 (0B WD], + 10301, )] < +oc,
0<t<to ice

2

[’

P
Orlog == (1)
P1

+ _Zzllatw(f)llffl +0.T ()7, +
1€

2

-1

10g ()

1

+ 2 o (DI + IIT(T)IIfH) dr < 4oco.
1+1 €€
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Moreover, either ty is as large as one wants, or there exists t1 such that the
theorem is true for any to < t1 and such that for to — ti, either the following
quantity,

n’ T
P
"p(to)"Loo + Z log _ﬁl(tO) + ”T(tO)”z,oo
k=2 1 2,00
+ 3 (Istto) o + 1Estto) ]y + 1Bilto) 1), (5:30)

ice
or supg, 1/T is unbounded.

The proof of this theorem rests on the theoretical study of Vol’pert and Hud-
jaev [6], in particular on theorem[4.7l We have to verify its various assumptions,
after having defined function £ by £L(W;, W) = 1/p + 1/T. Moreover, we prove
that infgs p(t, ) > 0 as long as (5.30) remains finite, so that only 7" may reach
the boundary of Ow.

Proof We define the function £ by £(W;,W,) = 1/p + 1/T. As we assume
that WO € V;(R?), infgs p° > 0 and infgs T° > 0, we immediately obtain that
property (Ex;) holds. Proposition [5.7]implies readily properties (Exp-Exq) and
(Ex7) on the regularity of matrices and vectors. Properties (Exs-Exg) concerning

symmetry of matrices KB’I, Kg’“ and Ki’l, 1 € €, are obtained by using proper-
ties (S1-Sz) obtained in theorem [5.6. Moreover, property (Nory) yields readily
that property (Exg) holds.

Finally, we note that from the conservation of p, we have

t
p(t, @) = inf p'(a) exp [—/ [02-v(s)lg,cds|
3 0 ’

and thus infgs p(¢, ) > 0 as long as (5.30) remains finite, so that only T may
reach the boundary of Ow. O
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