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Abstract

We investigate a system of partial differential equations modeling ambipolar plasmas. The
ambipolar—or zero current—model is obtained from general plasmas equations in the limit of
vanishing debye length. In this model, the electric field is expressed as a linear combination
of macroscopic variable gradients. We establish that the governing equations can be written
into a symmetric form by using entropic variables. The corresponding dissipation matrices
satisfy the nullspace invariant property and the system of partial differential equations can be
written into a normal form, that is, in the form of a symmetric hyperbolic-parabolic composite
system. By properly modifying the chemistry source terms and/or the diffusion matrices,
asymptotic stability of equilibrium states is established and decay estimates are obtained. We
also establish the continuous dependence of global solutions with respect to vanishing electron
mass.

1 Introduction

Tonized gas mixtures—or plasmas—with chemical reactions are related to a wide range of practical
applications such as laboratory plasmas, high-speed gas flows or atmospheric phenomena. This is
a strong motivation for investigating the structure and properties of the corresponding systems of
partial differential equations.

The equations governing high density low temperature plasmas can be derived from the kinetic
theory of ionized gas mixtures. Different systems can be obtained depending on the various char-
acteristic lengths and times of the phenomena under investigation. Assuming that there is a single
temperature in the mixture—this is the case for numerous practical applications—the correspond-
ing governing equations are derived in Ferziger and Kaper[4] and Graille and Giovangigli[8] for
general reactive polyatomic gas mixtures.

The ambipolar approximation is often used in the modeling of laboratory and space plasmas
and is obtained for vanishing Debye length[2, 14]. The corresponding model is a quasi-neutral
model where the conduction current is set to zero. In this approximation, there is no magnetic
field and the (internal) electric field is eliminated through the use of the zero current constraint.
The electric field can then be expressed in terms of macroscopic variable gradients and the resulting
transport fluxes involve new effective ambipolar transport coefficients.

The governing equations for reactive ionized gas mixture in the ambipolar limit constitute
a second-order quasilinear system of conservation laws. The asymptotic stability of equilibrium
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states for this quasilinear system of partial differential equations is by itself an important question.
This system, however, also depends on numerous parameters such as thermal conductivity and
chemical reaction constants.

One of these parameters, often used in the physical modeling, is the electron mass, which is
usually let to be zero. In order to investigate this limit, the dependence of the system coefficients
on the electron mass must be clarified since electron diffusivities become infinite as the electron
mass vanishes. In order to do so, we explicit the dependence of multicomponent diffusion matrices
on binary diffusion coefficients and establish the smoothness of the system coefficients with respect
to the electron mass.

We next consider an abstract system of conservation laws depending smoothly on a parame-
ter. We investigate symmetrizability, asymptotic stability of equilibrium states, and continuous
dependence of solutions with respect to the parameter. We first establish continuous dependence
of solutions locally in time and then globally in time around equilibrium states under appropriate
norms. Decay estimates are also established globally with respect to the parameter.

We then apply these results to the system of partial differential equations modeling ambipolar
plasmas. We first establish that the system can be written into a symmetric form and admits
an entropy in the mathematical sense[12, 13]. The resulting dissipation matrices are shown to
satisfy the nullspace invariance property introduced by Kawashima[l2]. The system of partial
differential equation is next written into a normal form, that is, in the form of a symmetric
hyperbolic-parabolic composite system with two hyperbolic components, with smooth dependence
of the system coefficients on the electron mass.

The structure and properties of the equations in the ambipolar limit are first insufficient to
establish asymptotic stability. This problem, however, is shown to be artificial and due to the
lack of dissipativity properties associated with the electric charge equation, which must guarantee
that the charge remains zero for physical solutions. Two modified forms are then introduced for
the system of governing equations, that is, such that regular physical solutions coincide. These
reformulations guarantee asymptotic stability and continuous dependence of global solutions with
respect to the electron mass.

One can first modify chemistry production rates in the direction of the charge vector and orthog-
onaly to chemical reaction vectors. This yields a consumption term in the charge equation ensuring
enough dissipativity. A second modification, which has interesting numerical consequences, con-
sists in modifying the diffusion coefficients in the direction of the dyadic product of the charge
vector.

Our paper is organized as follows. In Section 2, we present the governing equation for reactive
ionized gas mixtures in the ambipolar limit. In Section 3, we investigate the dependence of the
system coefficients on the electron mass. Symmetrization and local existence for an abstract
system depending on a parameter is considered in Section 4. Global existence around equilibrium
states with continuous dependence on a parameter is established in Section 5. Symmetrization for
the quasilinear system modeling ambipolar plasmas is obtained in Section 6. Finally, in Section
7, we establish asymptotic stability of equilibrium states for ambipolar plasmas with continuous
dependence on the electron mass.

2 Ambipolar reactive gas mixtures

We consider a reactive ionized gas mixture composed of n® chemical species in the presence of an
electric field. The general governing equations describe the conservation of species mass, momen-
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tum and energy, and are completed by Maxwell’s equations for the electric field[4, 8]. The full sys-
tem of partial differential equations has a complex structure and is out of the scope of the present
paper. These equations are simplified here in the ambipolar—or zero current—approximation
where the conduction current vanishes.

2.1 Conservation equations

We denote by & = {1,...,n°} the species indexing set, n° the number of species, py the mass per
unit volume of the k*" species, v, the number of mole per unit volume of the k" species, »;, the
molar charge of the k*" species, and mj, the molar mass of the k*" species so that pr, = myvys. In
contrast with previous work[10], we will use molar quantities like (71, ..., Vns) in order to describe
the state of the mixture. This molar formulation is, of course, strictly equivalent to a mass
formulation using mass densities like (p1, ..., pns) because the species mass my, k € &, are strictly
positive. However, we will ultimately investigate the asymptotic limit of vanishing electron mass,
and, therefore, we need to work in a molar framework.
The mole conservation equation for the k™ species reads

atp)/k"‘aw'('}/kv)"‘aw'fk =wy, k€6, (21)

where v is the macroscopic velocity of the mixture, Fj; the molar diffusion flux and wy the molar
production rate of the k' species. Bold symbols are used for vector or tensor quantities in the
physical space R? so that for instance 8, = (1,02, 03)".
In the absence of magnetic field, the momentum conservation equation can be written in the
form
0, (pv) + Oz (pr@v + pll) + 8411 = qFE, (2.2)

where p is the pressure, I the unit tensor, IT the viscous stress tensor, ¢ the total charge per unit
volume, and E the (internal) electric field.
Finally, the energy conservation equation reads

O, (E+ $pvv) + 8, ((E+ Lpvv +p)v) + 0,-(Q + ITw) = (¢E + j)-E, (2.3)

where £ is the internal energy per unit volume, @ the heat flux, and j the conduction current
vector. In the following, the (internal) electric field is eliminated from the governing equations by
using the ambipolar constraint.

2.2 Transport fluxes

The molar diffusion flux Fi, k € &, can be written in the form
Fr=%Ve, ke, (2.4)
where the diffusion velocity of the k' species V4, is given by

Vi == D (di+x:0z108T), k€@, (2.5)
les

and where the diffusion driving force dj reads

1
di = 5(3.@]91@ — e E). (2.6)
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In these relations, Dy, k,l € G, are the multicomponent diffusion coefficients, xx, k, € S, the
thermal diffusion ratios, and T the absolute temperature. The expression of the heat flux is

Q=-)\0,T+ Z (pxk + eHy) Vi, (2.7)
kEG

where Hj, is the enthalpy per unit mole of the k' species. Finally, the viscous stress tensor is given
by

IT = —k(0zv)I — 1S, (2.8)
where S is the usual strain symmetric traceless tensor

S = 8:’6” + 8;6’01: - %(8mv)ﬂ

2.3 Zero current constraint

In ionized mixtures, there is a Coulomb screening by mobile charges over distances of the order of
the Debye length. For small Debye length, the mixture can be considered as quasi neutral, so that
q = 0, although the electric field is non zero. In the absence of external electric field, and for small
Debye length, it is also natural to assume that positive ions and electrons diffuse as a team[1, 2, 14]
so that the conduction current j vanishes. This is the origin of the terminology ambipolar and this
approximation is consistent with the charge equation

atq + am'(qv) + amJ =0.

In other words, the (internal) polarization electric field E insure that the conduction current j
vanish. In this situation, provided that the initial charge is zero, we recover that the charge ¢
remains zero at all time.

We must now eliminate the electric field E by using the zero conduction current constraint.
The conduction current j = Eke@ sy Fr = Eke@ »x;VE Vi can conveniently be written in the
compact form

Jj= <Zv V>a
where z = (21,...,2p)", 21 = Vhotp, k € S,V = (Vi, ..., V;)®, and (-, -) denote the scalar product
between quantities in R™ or (R3)"S. On the other hand, thanks to isotropy of diffusive processes,
the relations expressing the diffusion velocities can be recast into the vector form

E
V = —D(d° + x8zlog T + z;),

t

where d° = (dY,...,d%)", d) = (Ozpr)/p, k € &, and X = (x1,-..,Xns)". Therefore, the

constraint j = 0 implies that

P (2, Dz)
Defining the square matrix D= (ﬁkl)kl by

E  (2,D(d’ + x851ogT))

~ Dz®Dz
D=D—-——, 2.9
D7) 29
it is readily seen that R
V =—D(d" + x 8, logT), (2.10)
that is, Vi, = —> ics ﬁkl(d? +x1 logT), k € &. These expressions now guarantee that the

conduction current j vanishes independently of the state variables and their gradients.
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2.4 Thermodynamics

The pressure p, the mass density p and the charge per unit volume ¢ can be expressed as

p=> RTw,  p=> mm  q4= D W,

keS keS keS

where my, is the mass per unit mole of the k' species, s the charge per unit mole of the k'
species, and R the perfect gas constant. The internal energy £ and the enthapy H per unit volume

can be decomposed into
&= Z%Ek, H= Z%Hk,
keSS keSS
where Ey and Hy = Ey + RT are the internal energy and the internal enthalpy per unit mole of
the k*" species and T the absolute temperature. The internal energy Ej can be written in the
form

T
Ey(T) = E —|—/ Cy (1) dr,
Tst

where E}' = Ej(T") is the formation energy per unit mole of the k™ species at the positive

standard temperature 7' and Cy.i is the constant-volume molar specific heat of the k™ species.
The entropy S and Gibbs function G per unit volume can be expressed in terms of the species

entropies per unit mole Sy, k € &, and Gibbs functions per unit mole G, k € &, from the relations

S=> WS  G=Y G

ke6 ke®

where

Tst T %
S5t is the formation entropy at the standard temperature 7' and standard pressure pst, ' =
p*'/RT®" is the standard concentration, and where Gy, = Hjy — T'Sx. We also define the species
reduced chemical potential u;, = Gr/RT, k € &. Finally, the species Gibbs functions G and the
species reduced chemical potential py, k € &, are functions of v and T, which can be written

T
SuTow) =S¢+ [ GurlT) 47~ Riog <W“ ) ,

Gr(w, T) = Gi(T) + RTlog vk, pu (i, T) = p(T) + log v,
where G}, k € G, are the species unitary Gibbs functions per unit mole and pj, k € &, are the

species unitary reduced chemical potentials.

2.5 Chemical source terms
We consider n” elementary reactions among the n® species which can be formally written as

Eu,fwsmk = Ey}grsmk, r e R,
kes kes

where M, is the chemical symbol of the k' species, vf and vP, are the forward and backward
stoichiometric coefficients of the k™ species in the r*" reaction, respectively, and R = {1,...,n"}
is the set of reaction indices.
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The Maxwellian production rates given by the kinetic theory can be written

wr= > (R — i), k€S, (2.11)
reR

where 7, is the rate of progress of the 7" reaction. The rates of progress are given by the symmetric
expression|7]

=X (exp(uﬁ, wy — exp(z/f,u)), (2.12)
where vf = (W, .. vE )" vP = (W0 B ) = (as .. piee)Y, and XS s the symmetric

reaction constant. We define vy, = vp, — vl , k € &, r € R, and the reaction vectors v, =
(Viry s Uper)®, 7 € M, s0 that v, = v? — L, and we denote by R = span{ v,, r € R} the linear

space spanned by the vectors v,., r € *R.

2.6 Mathematical assumptions

We describe in this section the mathematical assumptions concerning thermochemistry, and, partly,
the assumptions concerning transport coeflicients.

2.6.1 Assumption on thermothermochemistry

The species of the mixture are assumed to be constituted by neutral atoms and electrons. We
denote by 2 = {1,...,n*} the atom indexing set, n® the number of atoms in the mixture, my,
[ € 2, the atom masses and ay; the number of I*P atoms in the kP species. We also introduce the
atomic vectors a;, [ € 2, defined by a; = (ayy,. .., ansl)t, [ € A. We define agg as the number of
electrons in the k*® species and for notational convenience, we define 2 = {0} U2 = {0,...,n%}.
We also assume that the electron species is present in the mixture as well as one neutral species
and one positively charged species. For notational convenience, we assume that the last species
in the mixture is the electron species. Since we will ultimately investigate the limit of vanishing
electron mass, we will only assume that the electron mass m.s is nonnegative. We define the mass
vector m and the charge vector s by

m:(mlan..gmns)ta %:(%17...,%,”5)1:7

and the unit vector u by u = (1,...,1)*. We also define the mole fraction of the k*® species
Xe by Xk = Yk/ > ,ce V> and the mass fractions of the k™ species by yi = pr/ > ,cs o1 so that
Vi = MY/ D 1ee i We correspondingly define the mole fractions vector x = (xq, ... ,xns)t
and the mass fraction vector y = (y1,...,yns)".

(Thy) The nonelectron species molar masses my, k € &, k # n°, and the gas constant R are
positive constants. The electron molar mass my,s = mg is nonnegative. The formation
energies B3, k € &, and the formation entropies Si*, k € &, are constants. The molar
specific heats Cy 1, k € &, are C™ functions of T > 0 and there exist positive constants c,
and ¢, with 0 < ¢, < Cy 1(T) < Ty, for T 20 and k € 6.

(Th2) The atom molar masses my, | € A, are positive constants and the species molar masses
my, k € S, are given by

mip = E myag —l—ﬁloako, ke6.
led
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We also have the proportionality relation s, = —aagy, k € &, where « is a positive
constant which represents the absolute value of electron charge per unit mole.

(Th3) The stoichiometric coefficients V,fw and I/ET, k€6, r e R, and the atomic coefficients ay,
k € 6,1 € AU, are nonnegative integers. The numbers of electrons axy, k € &, 1 € A,
are integers. The atomic vectors a;, | € ™A, and the reaction vectors v,, r € R, satisfy the
conservation relations (v, ;) = 0, r € R, | € A. This relation expresses atom conservation
for 1l € A and charge conservation for | = 0.

(Thy) The rate constants K5, r € R, are C positive functions of T > 0.

(Ths) There exists at least a positive ionized species such that s, > 0, a neutral species such that
x, =0, and we assume that the last species is constituted by electrons so that »ps < 0.

These assumption imply in particular the vector properties a; € R*, 1 € A, and ap € R+, where
R = span{ v, 7 € R}. In addition, we have the vector relations m = ), o ma; 4+ moag, so that
m € RY, and » = —aay, so that sr € R*. Note that with (Ths) the vectors py = (p1,. .., pns)" and
2= (21, 2ns )t are linearly independent, as are the vectors m and s. Defining mj, = >, o muak
and p' =37 cpcpe 1 MYk We also have p = p’ —moq/a. Finally, the presence of a neutral species
in the model is not strictly needed, but somewhat simplifies the presentation, especially for deriving
explicit normal forms.

2.6.2 Assumptions on transport coefficients

We introduce a first set of assumptions concerning the transport coefficients which is only valid for
positive electron mass. These assumptions will be generalized in order to encompass the limiting
case of zero electron mass in the next section.

(tr1)  The multicomponent diffusion coefficients Dy, k,l € &, the thermal diffusion ratios xp,
k € &, the volume viscosity k, the shear viscosity n and the thermal conductivity A are C*°
functions of (T,~), where v = (Y1, ..., )", for T >0 and v > 0.

(tr2)  The thermal conductivity A and the shear viscosity n are positive functions. The volume
viscosity k is a nonnegative function.

(tr3) Fory >0 and T >0, the matriz D = (D), is real symmetric positive semidefinite and

its nullspace is spanned by the vectory = (y1,..., yns)t. The thermal diffusion ratios xp,
k € &, verify the relation (x,u) = 0.

These properties have important consequences for the matrix D of effective diffusion coefficients
defined in (2.9).

Lemma 2.1 Under Assumptions (Thi-Ths) and (tri-trs) the matrizc D is symmetric positive
semidefinite. Its nullspace is spanned by the vectors'y and z, where z = s, k € &, so that
N(D) =Ry @Rz and R(D) = span(y, z)=.

Proof. First note that y and 2 are non zero since v > 0 and are not proportional since there
exists positively as well as negatively charged species. This implies that (Dz,z) > 0 so that D is
well defined. After a little algebra, we obtain that

(D, 2) =<D <x— igjjiz> - igjjiz>
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The properties of D are then directly deduced form the properties of D. O

2.7 Quasilinear formulation

The relations (2.9) (2.10) imply that conduction current j vanishes, so that the charge ¢ remains
zero if it is initially zero. As a consequence, the momentum and energy conservation equations can
be simplified into

0,(pv) + Oz-(pr@v + pl) 4+ 0x-IT =0, (2.13)
O,(E+ Spvv) + 85 (€ + Spvv +p)v) + 82 (Q + IT-w) = 0. (2.14)

Whenever neutrality holds, one could further express v,s in terms of the heavy species molar
densities, and eliminate completely the electrons from the governing equations. This simplification,
however, will not be used in this paper, since it forbids symmetrization of the resulting system
of partial differential equations. Similarly, since the mass density can written p = p’ — mopq/a
where p' = Z?(;ll m} vk, one could use p’ instead of p in the governing equations, but this simpler
formulation is not needed in the following.

We introduce a compact notation that will be used in the following. We define the conservative
variable U by

U= (717 <oy sy PUL, PU2, PU3, &+ %pv"v)ta (215)

and the natural variable Z by
Z= (1, Ve, 01, V2, v3, T)". (2.16)

The components of U naturally appear as conserved quantities in the molar formulation of the
system of partial differential equations governing ambipolar plasmas. On the other hand, the
components of the natural variable Z are more practical to use in actual calculations of differential
identities.

The conservation equations can be written in the compact form

OU+> 0Fi+ Y oFi=q, (2.17)

icC ieC

where C denotes the set {1,2,3}, F; the convective flux in the i*™® direction, F?iss the dissipative
flux in the it direction, and € is the source term. The source term €2 given by

0= (wl,...,wns,0,0,0,0)t, (2.18)
and the convective flux F; by
Fi= (711)1', S Yns Vi, PULV; + B, pU2Vi + Biop, pusv; + Sizp, (€ + 5pv-v +p)11i)t, (2.19)
The dissipative flux F&s can de decomposed into
Fliss = paiff 4 pise, (2.20)
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where FY'*¢, the viscous flux, and F$f, the diffusion flux, are defined by
‘ t
Fyse = (0, ooy 0,100, g, I3, Zﬂijvj)
jec
) t
F?lﬂ = (_7:11', R ,fnsl'v 03 070’ QZ) :

The convective and dissipative fluxes are naturally given in terms of the natural variable Z.
In order to relate the natural variable Z to the conservative variable U, we investigate the map
Z — U. We introduce the open sets Oz and Oy defined by

07 = (R%)" xR3xR*,
OU = {’LL S Rns+4 TUL, e, Ups > O, Ups 44 > f(ui)}7

where f is the map from (Ri)" xR? in R given by

2 2 2
Ups 41 + un5+2 + un5+3 0
ZiEG Mgt €S

and E? is the internal energy per unit mole at zero temperature. The following lemma is easily
established as in the neutral case[10].

Lemma 2.2 Assume that properties (Thi-Ths) hold. The map Z — U is a C* diffeomorphism
from the open set Oz onto the open convez set Oy.

As a consequence of this lemma, and from the expressions of convective and dissipative fluxes
in terms of Z, we can rewrite (2.17) as a quasilinear form in the conservative variable U

O,U+ > Ai(U)aU =Y 9:(Bi;(U)9;U) + Q(U), (2.22)

ie€C i,j€C
where Az = 8UF1 and F?iss = — ZjEC B”(U)ajU, 1€C.

3 Vanishing electron mass

The asymptotic stability of equilibrium states for the quasilinear system of partial differential
equations modeling ambipolar plasmas (2.22) is, in itself, an important question. We note, however,
that this system also depends on numerous parameters such as thermal conductivity and chemical
reaction rate constants. This is a strong motivation for further investigating the dependence of
solutions on the system parameters. This will be done in the next sections under the assumption
that the system coefficients depend smoothly on the parameters under consideration.

One of these parameters, often used in the physical modeling, is the electron mass m,s = mg,
which is generally let to be zero. In order to investigate this limit, the dependence of the system
coefficients on the electron mass must be clarified. The thermodynamic assumptions (Thi-Ths)
can be used for any nonnegative electron mass and need not be modified. However, the transport
properties (thi-ths) are only valid for positive electron mass and must be replaced.

In order to do so, we need to explicit the dependence of multicomponent diffusion matrices on
binary diffusion coefficients and investigate the limit of the diffusion coefficients D for vanishing
electron mass.

10
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3.1 Definition of D as a generalized inverse

We introduce the matrix A defined by

XEX]
Akk = Z W, k¢ 6,
les ~kl

17k (3.1)

A :—%, kleG, k£l

kl
where DPI is the binary diffusion coefficient for the species pair (k,1) and x; the mole fraction of
the k' species given by x, = Y/ > ice - These coefficients DPin are only defined for positive
species masses. In a first order theory, DPi" only depends on pressure and temperature D" =
DPIn(T, p). More generally, for more accurate multicomponent diffusion coefficients, the quantities
DE}“, k,l € ©, are Schur complements from transport linear systems of size larger than n®, and
are then functions of T, p, and ~, but have similar properties[3]. The following properties of the
matrix A are easily established[6, 7].

Proposition 3.1 Assume that the coefficients ’DE}“, k,l € &, k # 1, are positive and symmetric,
and that v > 0. Then A is symmetric positive semidefinite, N(A) = Ru where u = (1,...,1)",
R(A) = ut, A is irreducible and a singular M-matriz.

We define the mass fractions by yr. = pr/ ) jce Pt = MrYr/ Y jcs Muy and the mass fraction
vector y = (y1,...,yns)". The multicomponent diffusion matrix D can then be defined as a proper
generalized inverse of A[6, 7).

Proposition 3.2 Keeping the assumptions of Proposition 3.1 there exists a unique generalized
inverse D of A with prescribed range y= and nullspace Ry, that is, a the unique matriz D such
that DAD = D, ADA = A, R(D) =y*, and N(D) = Ry. This matriz D is positive semidefinite,
we have AD = I —y®u, DA = I —u®y, and, for a,b positive with ab = 1, we have D =
(A + ay®y)~t — bu®u. The coefficients of D are smooth functions of (T,~y) for T > 0, v > 0,
provided that the binary diffusion coefficients are smooth functions of (T, ) so that the assumptions
concerning D in (tri-tr3) hold.

These results can easily be extended to the case of the matrix D. More specifically, when
neutrality holds, that is, ¢ = (z,u) = 0, there exists a unique w such that Aw = z and (w,y) = 0.
Introducing the matrix A=A-— 2®z/{(w, z), one can establish that D is the generalized inverse
of A with prescribed nullspace Ry @& Rz and range span(y, z)*. However, these results will not be
needed in the following where we will directly use the relation (2.9) defining D from D.

On the other hand, from the kinetic theory of gases we have

Dt = 0(o==), 32)

and the quantity DZ}“, /mymy can be assumed to be smooth. Therefore, electron diffusivities DZ;‘},
k € 6, k # n®, explode for vanishing electron mass m,s — 0.

11
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3.2 Diffusion matrices for vanishing electron mass

In this section, we specify the assumptions concerning the asymptotic limit of vanishing electron
mass. We define the small parameter ¢ by

€= (mns/m)l/Qv

where m is a characteristic mass of heavy species, that is, nonelectron species, and we investigate
the behavior of the system coeflicients as e — 0. We will denote by [0,€] an interval of relevant
values for e such that heavy species masses stay away from zero, so that (Th;-Ths) are satisfied,
where € > 0 is fixed. From relations (3.2), electron diffusivities Dgl‘}, ke 6,k #n°, goes to
infinity as € — 0 and we set

Dhin =Dhn k£l k#n®and | #n°,
. . (3.3)
Dhin = 1pbn k£l k=w or I=n,

where the coeffcients 152}“ are assumed to be smooth functions of the state variables T' > 0, v > 0
and of the parameter € € [0, €. The properties (tri-tr3) only hold for positive species mass, that is
for e > 0 and we have now to establish that D depends smoothly on the reduced mass ¢ and to
identify its limit as e — 0, thereby removing the sigular behavior at e = 0.

In order to investigate the limit of D as ¢ — 0, it is convenient to introduce a partitioning
of the species & = {1...,n°} between heavy species h = {1,...,n* — 1} and electrons e = {n’}.
Correspondingly, there is a block decomposition of vectors z € R™ in the form z = (2", xe)t and of
matrices M € R™" such that y = Mz if and only if y* = M"zP 4 MPheze and y° = Mgt 4 Meeze.
The matrix A admits in particular the block decomposition

Abh  Abe Abbh Ahe

A= |:Aeh Aee:| - |:€Aeh 6Aee ) (34)
where the coefficients of A are smooth functions of T' > 0, v > 0 and € € [0, €] and are defined as
in (3.1) with DRI replaced by DE". We will denote by Af" the matrix A = APh obtained for
e = 0, and by yB the vector y® obtained for € = 0, keeping in mind that my, k € &, depend on €
from (Thy).

Proposition 3.3 Assume that the coefficients ngli“, k,l e &, k#IL, are positive and symmetric,
and smooth functions of T >0, v > 0 and € € [0,€. There exists coefficients D which are smooth
functions of T > 0, v > 0, and € € [0, such that for any € > 0 we have

Dhh - Phe
D= _ 1.
Deh ZDee

€

Moreover, the matriz D(}}h obtained for € = 0 is the diffusion matriz between heavy species in the
absence of electrons, that is, D" is the generalized inverse of AR with nullspace Ryl and range
(y&)*. Finally the scalar coefficient D§¢ obtained for e = 0 if a positive function of T > 0 and
v > 0.

Proof. From (3.4) we can introduce the matrices

Ahh 6Ahe:| Alo B |: Ahh Ahe:|

up __ ~ =
A - |:Aeh Aee

12
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which are smooth functions of T > 0, v > 0 and € € [0,€]. From the properties of A, it is easily
obtained that for € € [0, we have N(A") = Ru, R(A") = ut, N(AP) = Ru, R(A®) = ut,
where we have defined T = (u", €)*. From the definition of € we also have y = (y!,y®)" with y° = €2y°
where ¥ is independent of ¢, and we define y = (y", eye)t. We now introduce the generalized inverse
DUP of AP with range R(D"P) = y* and nullspace N(D"P) = Ry, and the generalized inverse
D'° of Al° with range R(D') = y* and nullspace N(D') = Ry. These matrices D"P and D' are
well defined for any € € [0, since N(A"™) @yt =R", R(A"™) ® Ry = R”, N(A°) @ y+ = R,
R(A®) @ Ry = R™, thanks to (y,u) = (y,u) = 1. In addition, these matrices D"P and D'° are
smooth functions of T' > 0, v > 0 and € € [0, € since for any positive «, 3 with o8 =1 we have

(D" + aligu)(A" + fy@y) = (D™ + augt)(A™ + fyoy) = I.

Denoting by M the diagonal matrix M = Diag(1,...,1,¢€), it is easily seen that for any positive e
we have A = MA" = Al°M and D = D"’M~! = M~1 D", These relations yield in particular that
D — (‘Dlo)t so that th — (Dup)hh — (Dlo)hh’ Dhe — (‘Dup)he/6 — (Dlo)he’ Deh — (Dup)eh —
(D'*)h /e, and D®® = (D"P)*®/e = (D'°)*®/e. This shows in particular that D™ D" and D"
are smooth functions of 7' > 0, v > 0 and € € [0, €. The identification of AB! results from simple
algebraic manipulations making use of the properties of D and A of thanks to m,s = me2. In
addition, we have for e = 0 that (DyP)®® = (D{)*® = 1/AE and it is easily deduced from the
general properties of diagonal diffusion coefficients[7] that (A"P)®° is a positive function of 7' > 0,
~v>0and € € [0,&. o

We can now establish that D is a smooth function of 7' > 0, >0, and € € [0, €.

Proposition 3.4 Assume that the coefficients @E}“, k,l € G, k #1, are positive, symmetric, and
smooth functions of T > 0, v > 0 and € € [0,€]. Then the matriz D is a smooth function of T > 0,

v >0, € € [0,€]. Moreover, defining zi, = zx/zns for k € {1,...,n° — 1}, its limit as e — 0 is given
by
) by D
lilr(l) D(e) = 3 . .
= (D}t (DY

Proof. The smoothness of D for positive € is a direct consequence of the smoothness of D. The
only nontrivial part of this proposition concerns the behavior for small e. We first note that

e\2
(Dz,z) = &) (Dee + 2eDPZ" + (DM 2", zh>),

€

so that for the block D" it is easily obtained that

(thzh +ljhe)®(ljhhzh+bhe)
€

Dhb _ phh _ - - _ .
Dee + 2eDehzh + ¢(Dhhzh Zh)

This expression shows that Db is smooth up to € = 0 and converges to th as € — 0. For the
term D" we can write that

(thZh +Dhe)(Dee +€Dehzh)

ﬁhe — Dhe _ . - ! ,
Dee + 2eDehzh + ¢(Dhhzh Zh)

13
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so that Db is smooth up to € = 0 and converge to —ﬁghzg as € — 0. Thanks to the symmetry of
D, the term D°" is similar. Finally, the last term reads

~ 1/
Dee — (Dee _

€

(Dee + 6[)ehzh)Q )
Dee 4 2eDehzh 4 ¢(Dhhzh Zh)"/)”
and can be recast in the form

Dee<thZh, Zh> _ 6(Dehzh)2
Dee + 2¢Debzh 4 e(thzh, zh)’

~
Dee —

and there is a remarquable cancellation of singularity. This term is thus smooth up to € = 0 and
converges to (Diz" z%) as e — 0. a]

Remark. The limiting transport coefficients obtained with ﬁ(})‘h can also be obtained by letting
d,s =0, so0that E = —pd?ls /zns, and by substituting this relation in the expression of the diffusion
velocities (2.5) (2.6). This relation can also be obtained by letting the electron mass to go to zero
in an electron momentum conservation equation.

3.3 Assumptions for vanishing electron mass

As a consequence of the results obtained in the preceding sections, we can reformulate the assump-
tions on transport coefficients as follows.

(Tr1)  The effective multicomponent diffusion coefficients Bkl, k,l € &, the thermal diffusion
ratios X, k € 6, the volume viscosity K, the shear viscosity n, and the conductivity \ are
C® functions of T >0, v >0 and € € [0, .

(Tr2)  The thermal conductivity A and the shear viscosity n are positive functions. The volume
viscosity k is a nonnegative function.

(Trs) Fory >0, T > 0, and € € [0,, the matriz D = (B)kl is real symmetric positive
semidefinite and its nullspace is spanned by the vectors y and z. The thermal diffusion
ratios Xk, k € &, verify the relation (x,u) = 0.

We can finally rewrite the quasilinear system (2.22) in the form
U+ > Ai(U,0)0,U= > 9;(Bi;(U,€)0;U) + Q(U,e), (3.5)
icC i,5€C

where we have emphasized the dependence of the coefficients on the reduced electron mass param-
cter €. The system coefficients of (3.5) are naturally defined in the open domain (U,¢) € Oy
where

Owo ={U,6) eR"™: Uy, . Up > 0,6>0,Ups s > f(Us, ..., Upsys, )},

where f is the map introduced in (2.21) which depends on e through the species mass my, k € &.
We have seen, in addition, that the system coefficients can be smoothly extended up to € = 0.

14
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4 Local existence for an abstract system

In this section, we investigate symmetrization and local existence of solutions for hyperbolic—
parabolic systems depending on a parameter.

4.1 Conservative symmetrization

We consider an abstract second-order quasilinear system depending on a parameter in the form

QU+ ) AI(UTe)a Ut = > 0i(By; (U5 €M)0;U%) + QF (User), (4.1)

ieC* i,jEC*

where (U%e*) € (’)(U*’E*), O(U*’E*) is an open set of R” xR™ , and C* = {1,...,d} denotes the
direction indices of R%. Note that the superscript * is used to distinguish between the abstract
second-order system (4.1) of size n* in R? with €* of size m* and the particular ambipolar plasmas
system (3.5) of size n® +4 in R? with e the reduced electron mass. All quantities associated with the
abstract system have the corresponding superscript *, so that, for instance, the unknown vector
is U*. We consider open domains O(U‘:e*)’ for the sake of simplicity, and assume that the slices

g = {U* e R"; (U%e") € O (y+e-) } are convex for all €. We assume that the following properties
hold for system (4.1).

(Edpy) The convective fluzes F¥, i € C*, dissipation matrices B}
are smooth functions of the variable (U%e*) € Oyseny-

i ©.J € C*, and source term

The following definition of a symmetric (conservative) form for the system (4.1) is adapted
from Kawashima and Shizuta [13].

Definition 4.1 Consider a C*° dipheomorphism (U%e*) — (V%e*) from the open domain Owsen
onto an open domain O(V*’E*) and consider the system in the V* wvariable

As(VIENOVT + Y AL(VIENaVT = D (Bl (Ve V) + Q7 (Vie), (4.2)
ieC* i,jeEC*
where _ _
Ay = dy.U, Ar = Afdy.U* = d,.F},
A S @
Bj;, = B;dy.U%, Q= O~

The system is said of the symmetric form if the matrices Kg, Kf, i€ C*, and B: i,j € C*,

verify the following properties (S1-Sa).

@5
(S1)  The matriz R(’; (V% €*) is symmetric positive definite for (V% e*)e (’)(V*)E*).
(S2)  The matrices ;&1* (V5e¥), i € C*, are symmetric for (Vie*) € (’)(Vﬁe*).
~ t ~ . .
(S3)  We have Bj;(V5¢*) = B}, (Vie*) fori,j € C*, and (Vie*) € Owseny:

(Sa)  The matriz E*(V*, efw) = Zi,jeC* é;‘] (V% e )wyw; is symmetric and positive semidefinite,
for (Vie*) € O(V*.e*)’ and w € X471 where X1 is the unit sphere in d dimensions.
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The following generalized definition of an entropy function is adapted from Kawashima[12] and
Kawashima and shizuta[13].

Definition 4.2 Consider a C* function o*(U% €*) defined over the open domain O(U*E*) such that

the slices Of. = {U* € R™; (U%e*) € (’)(U*E*)} are convex. The function o* is said to be an entropy
function for the system (4.1) if the following properties hold.

1 e function o* is a strictly convex function o € Of. in the sense that the Hessian
E Th ti * trictl ti u* € O th that the H
matriz is positive definite in each slice Oy..

(E2)  There exists real-valued C*° functions qf = q (U%€*) such that

(aU*O'*) A;k Zau*qf, zEC*, (Ute*) EO(U’;&*)

(E3)  We have the property that, for any (U%e*) € (’)(U*’E*)

(03.0) " (BY,)* =B (93.0%) ", djec.

(Es)  The matriz B* = >ijec Bij(UTer) (0%.0%(U3 e*))_l w;w; 15 symmetric positive semidef-
inite for any (U7 €") € Oy and w € nd-t,

Kawashima and Shizuta have established[13, 7] the equivalence between conservative sym-
metrizability and the existence of an entropy function. For systems depending on a parameter

€*, some limitations on the domains O(y«.-) seems necessary, like the smoothness of the slices

€ — Off;, using local charts. In order to avoid such technicalities, we only give a simplified

version of an equivalence theorem, sufficient for our application to ambipolar plasmas.

Theorem 4.3 Assume that the system (4.1) admits an entropy function o* defined over O(U*E*).

Then, the system can be symmetrized over O(U*E*) with the symmetrizing variable V* = (0.0* )E.
Conversely, assume that the system can be symmetrized, and that, for the sake of simplicity, the
open O ..y is in the form Oy, .y = Oy XO.- where Oy. CR™ s independent of €* and O. C
R™ independent of V*. Then there exists an entropy defined on O(U*’E*) such that V* = (0 o*)*.

4.2 Normal form

We assume that the abstract quasilinear system (4.1) satisfies

(Edp,) The system (4.1) admits an entropy function o* on the open set O(U*_e*) and the slices
g = {U* e R™;(Uke*) € O(ysexy} are conveu.

Introducing the symmetrizing variable V* = (J.0* )%, the corresponding symmetric system (4.2)
then satisfies Properties (51-S4). However, depending on the range of the dissipation matrices
Ejj, this system lies between the two limit cases of a hyperbolic system and a strongly parabolic
system. In order to split the variables between hyperbolic and parabolic variables, we have to put

the system into a normal form, in the form of a symmetric hyperbolic—parabolic composite system.

16
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Introducing a new variable W% associated with a diffeomorphism from O(Vw) onto O(Wﬁe*),
and multiplying the conservative symmetric form (4.2) on the left side by the transpose of the
matrix 0. V*, we then get a new system in the variable W* and have the following definition of a
normal form[13].

Definition 4.4 Consider a system in symmetric form, as in Definition 4.1, and a diffeomorphism
(V5 e*) — (W¥e*) from O ysery onto an open set O(W*_e*), The system in the new variable W*

Ag(W3eaW* +> AL (W)W = > 0i (B (W5 )W)+ T (W1 €3 8,W*)+ Q7 (Whe),

ieC* i,jEC*
(4.4)
where . .~ — £ =
Ao = (8WV*) AB (3WV*)a Bij = (3WV*) ij (3WV*),
Al = (O V)" AF (B V), Q= (0. V), (4.5)
T = — Y 0i(0w.V*)" By (Ow. V¥ )W,
i,jEC™

satisfies properties (S1-Sa) rewritten in terms of overbar quantities. This system is then said to
be of the normal form if there exists a partition of {1,...,n*} into 1 = {1,...,n8} and 1 =
{n§+1,...,n*}, such that the following properties hold.

(Nor1) The matrices Ay and §:j have the block structure

. Ayt 0 . 0 0
o) B lesy)

—I1,11

(Nor2) The matriz §*H’H(W*§ fw) =3 ice- By (Wheh)wiw; is positive definite, for (W7ie) €

O(W*’E*), and w € L1,
(Nor3) Denoting 0, = (1, ...,94)°, we have

—x —x — t
T (W€t 0,W") = (T, (W35 0,W;) T (Wi es0,W7))

where we have used the vector and matriz block structure induced by the partitioning of {1,...,n*}
into 1=1{1,...,n5} and 11 = {nf +1,...,n*}, so that we have W* = (W, W*)*, for instance.

A sufficient condition for system (4.2) to be recast into a normal form is that, for any fixed
value of €*, the nullspace naturally associated with dissipation matrices is a fixed subspace of R™ .
This is Condition N introduced by Kawashima and Shizuta, which is now assumed to hold. We
strenghen this condition by assuming that there exists a smooth explicit representation of this
nullspace in terms of €*.

(Edp3) The nullspace of the matriz

B*( E B* (V35 e ww;,
i,jEC*

17
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does mot depend on V* and w € X971, we denote by n§ its dimension nf = dim(N(E*)),

and we have é;‘j(V’: e*)N(E*) =0, 4,7 € C*. Furthermore, there exists a C* application

€* — P(€*) such that the first n§ columns of P(e*) span the nullspace N (B*).

In order to characterize more easily normal forms for symmetric systems of conservation laws
satisfying (Edp;-Edp;) we introduce the auxiliary variables[10, 7] U* = P*U* and V¥ = P~1V.
The dissipation matrices corresponding to these auxiliary variables have nonzero coefficients only
in the lower right block of size n* — n§, where nf = dim(N (B*)) Normal symmetric forms are
then equivalently—and more easily—obtained from the V* symmetric equation[10, 7]. A carefull
examination of the proof in Giovangigli and Massot reveals that the following theorem holds.

Theorem 4.5 Consider a system of conservation laws (4.2) that is symmetric in the sense of
Definition 4.1 and assume that the nullspace invariance property (Edps) is satisfied. Denoting by
U* = P*U* and V*' = P71V, the usual auziliary variable, any normal form of the system (4.2) is
giwven by a change of variable in the form

W* = (U, ), du (Vi €)',

where ¢, and ¢y are two diffeomorphisms of R™ x R™o and R™ ~"™ x R0, respectively, and we
have . . .
T (W5e;0, W) = (0, T (W75l GEWI*I)) )

4.3 Local existence

In this section we investigate local existence of solutions around equilibrium states and the contin-
uous dependence of solutions with respect to a parameter. We consider a system of conservation
laws satisfying (Edp;-Edp;) and the additional property

(Edp,) The system (4.1) admits an equilibrium point U*¢ independent of €*.

We will denote by V*¢ and W*¢ the equilibrium point in the V* and W* variables respectively. We
assume for convenience that the domain O,y..., contains a subset in the form Ow- x K . where

Ow- is an open set of R"" independent of ¢*, such that W*¢ € Ow-, and K. is a compact set of
R™ . In the following, we investigate the dependence of local solutions on the parameter e*. We
will denote by || e ||, the norm in the Sobolev space W4(R?) and otherwise || || , in the functional
space A.

Theorem 4.6 Let d > 1 andl > [d/2] + 2 be integers and let b > 0 be given. Let O¢ be given such
that Og C Ow-, dy such that 0 < dy < d(Og,d0w-), and define O1 = {W* € Ow-;d(W*Op) <
dy }. Then there exists T > 0 small enough, which only depend on O1, b, and K_., such that for
any W*O with |W*0 —W*¢||, < b and W** € Oy, and any €* € K_., there exists a unique local
solution W* to the system

AW+ > A oW = Y 9;(BoW) +T +Q,
iec* i,jecx

with initial condition
W*(0,z) = W*O(x),

18



Asymptotic stability of equilibrium states for ambipolar plasmas

such that
VV*@7$)€ Chv

and
Wi — Wi e CO([0, 7], WE(RD) net (0,7, W3 (RY)).

Wi — Wie e ¢O([0, 7], WH(RY)) nct([0, 7], Wi 2(RY)) N L2((0,7), Wit (RY)).

In addition, there exists C' > 0 which only depend on Oy, b, and K., such that
* *e T * *e * xe |12
s W) =W [ IWan) Wi ar < W W ()

Finally, if W* is the solution corresponding to the initial state W*°(z) and parameter €* and W
is the solution corresponding to the initial state W*O(x) and parameter €*, we have the estimate

V) 2 T * AT 2 * NI 2 * A%
sup [[W*(7) =W (T)||H+/0 IWE(T) = Wa(r)ll; dr < C(IW™ = W[, + 671 (€1€)), (4.7)

0<7<T

where C' > 0 only depends O1, b, and K.., and where

0-1(€3€) = [Ao(n€) = Ay i,y + DA i) eam,
ieC*
+ ) }ﬁfj(-,e*)—Efj(.,é*)|c_l(51)+}ﬁ*(.,6*)_ﬁ*( e,
i,jEC*

Proof. Solutions to the nonlinear system (4.4) are fixed points W = W of the linear equations[12]

Ao (W3 0W; + Y e AL (W5 e)aW: = £ (W5, W7, ¢*),

. . (4.8)
Ay (WEe)OWs — 3, - By (W5 €900, Wi = (W5 0,W3 e),
with

o= =) AT W)W + O (W),

ieC*
o= =) AT WINWE — Y AT (W)W

ieC* ieC*

T (WSS 0,W) + 0, (W) + 3 0, (B ;Wi
i,jEC*

and are hyperbolic in V~VI* and strongly parabolic in V~V1*1 Fixed points are investigated in the space
W* e X» ((’)1, M, Ml) defined by

Wi = Wi e CO([0,7], Wa(R)),  g,W; € CO([0,7], W5 ' (RY)),

Wi — Wi € €0([0, 7], W5 (R?)) N L*((0,7), Wy (RY)),
O,W;, € C°([0,7], W5 2(RY)) N L2((0,7), W5~ (RY)),
W (¢, z) € Oy,
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* *e |2 T * xe (|2
sup [IW(r) — W2 + / W2 (r) — Wee 2, dr < M,

0<T<T
and -
* 2
/ 10,W*(7) |2, dr < M.
0

For W* in Xz (01, M, My), and 2 < k < I, we have the estimates[12]
N 2 ¢ N7 *e 2
W (6) =W+ [ W) =W dr < CFexp(Cate + 1)

t t
* xe (|2 * *
(1w =W+ ot [ I8N+ [ 160N ar), (1.9)

where C1 = C1(01,K,.) depends on O and K.. and Co = C2(O1, M, K..) depends on O1, M, and
K.+, and is an increasing function of M. From the classical estimates

[1£(0) = FO)le < Coll fller( 1< poe) (L + Il )" Ml

where Cj is a universal constant, we also obtain upper bounds in the form
t
* 2 * 2 * 2
IOl + IO, < C2M?, / IE(P)l} dr < C2(1 + )M (4.10)
0
From the governing equations, we also obtain
T e 2 2 (172 2, 72
[ 10 )y ar < €3 (37° + w2 + 37%)) (4.11)
0

where M is defined for W* as M for W* and C3 depends on Oq, M, and K
function of M. We now define for any « € (0, b]

and is an increasing

€*

Ma = 201(01, Ke*)a, Mla = 203(01, Mb, Ke*)2Cl (01, KE*)OZ.

Let then be 7 < 3/2 small enough such that
exp(C2(O1, My, Ko ) (7 + Mupv/7)) <2,

C2(Oy, My, K. )7(1 +7)(2C1(01,K.)) P < 1,
CoMV/7 < dy,

where [|¢]| ;o < Co||¢[li—1. Then, for any o € (0,8], any W* € Xz (O1, Mo, M14) any W*(z), such
that W*0 —We € W(R?), W0 € O, and |W*® — W*¢||, < a, and any €* € K_., the solution W*
to the linearized equations stays in the same space X; ((’)1, My, M 1a). More specifically, we obtain
from (4.9) and (4.10) that

M? < 2020° (1 + 4C2C3(1 + 2t)) < 4C2a? = M?

and from (4.11) we deduce that M2 < C2(2C,)2(1+2t) < M2, and finally that [|[W*—W*|, .. <
CoMlaﬁ < d.
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In order to obtain fixed points, we establish that for 7 small enough, the map W* — W+
is a contraction in all the spaces Xz (01, Ma, M1a), o € (0,b], and we establish simultaneously

inequality (4.7). Let W* and W* be in X- (O1, My, Myy), let W*0(z) and W0 (z) such that W*9 —
we ¢ ng(Rd)’ W*O —We ¢ Wé(Rd), W*O,W*O c 607 ||W*O _W*eHl < a, ||W*O _W*eHl < a, let
e*,€* € K.., and define §W* = W* — W* and SW* = W* — W*. Forming the difference between
the linearized equations, we obtain that

Ao (W )0,0W; + Sece A, (W5 €)0:0W; = 0,67 + 0,87, (4.12)
Ao (W e)D0Ws = 3, jee By (W3 €)0i0;0W;, = 6,5+ 6. fr, |
where
e = A (W) (A (WS €))7 (W 0: W ) = 6 (W0, )
- AW W) R W) - R (W) o

i€C*

dur i = AG (W3 €) (Ag' (W3 €))7 (W30, W 3 ) — £ (W3 0. W5 €”)
Sl

+ Y (AW e R wse) B W) = B (W) i, Wi

5 fF = (x;;(w»; &) — Ag (W* e*)) (AG' (W3 €)M (W3 8. Wi, €7)
=S (AT W) - RS (W) (R (W) TR (W ey
(K”(W* &) — KL"(\TV’:e*))ain R W O,WE, E) — £ (W7 0. Wi, )

and
—IIL 1T 11,11

S = (Ag”(wt ) Ao (w’:e*))(Ao (W3e) R (W3 0:W5 €")

n Z ( 11 11 Ag H(W, )) (Ag II(W,: E*)) lBII II(W* e*)aa Wn

i,jE€C

+3 (AW ) AN WS €)) 0:0,Wi + 6 (W 0.W7 ) — £ (W5 0.7 ),

i,j€C

These expression now imply that
* (12 * (12 *
8 F N7t + 10w Bl < Ca(lOWT 17y + 1OWEP),

||5e*fI*Hl271 =+ ||5e* ||l 2 C155l 1( )7
so that

~ 2 T~ 2 o2 ”
sup |6 ()2, + / 16W; (7)1 dr < Co(IW0 — WO, + 62, (3 ¢%))

o<t T

+ Ot s W @I+ [ Wi ). (43)

0<T<T
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where all constants Cy4, C5, Cg, Cr, depend on Oy, b, and K_.. Now if 7 is small enough so that
C77(1 +7) < 1/2, by letting W*0 = W0 and €* = ¢*, we obtain, that the map W* — W* is a
contraction in all the spaces X; ((’)1, M, Mla), a € (0,b]. Introducing the iterates W*" starting
at the initial condition W*° and such that W*(+1) = W*n_ that is, W*("+1) is obtained as the
solution of linearized equations, then the sequence {W*"},>¢ is easily shown to be convergent to
a local solution of the nonlinear equations satisfying the estimates (4.6) at order [ — 1. Inequality
(4.7) is then obtained by letting SW* = §W* in (4.13). Finally, the estimates (4.6) at order I
are recovered since for any a € (0,b], the space Xz (01, My, Mi,) is invariant, and the proof is
complete. o

5 Global existence and asymptotic stability for an abstract
system

In this section we investigate asymptotic stability of equilibrium states for an abstract system
of conservation law in normal form and the continuous dependence of solutions with respect to
a parameter. We consider a system of conservation laws satisfying (Edp;-Edp,) and assume for
convenience either that the domain O(Ww) contains a subset in the form Ow~ x K_., where Ow-
is an open set of R independent of ¢* and K.+ a compact set of R™" independent of W*, or that
there is a smooth extension of the system coefficients to such a domain.

5.1 Local dissipativity

If we linearize system (4.4) around the constant stationary state W*¢, we obtain a linear system
in the variable w* = W* — W*¢

Ag(WeNaw™ + ) A (WS e)w™ = Y B (We)didw' — L (Wem)w”,

ieC ijec
where L' is defined by L = —8,,.Q . By Fourier transform, the spectral problem associated with
this linear system reads

MRGWS )6+ (CA (WS, e) = BT (WS w, ) + T (W) )6 = 0, (5.1)

where ¢ €iR,i?=—1,we X1 ¢ € Kes
AT W<w, ) = Y A (WS w;, and BT (WS w, ) = Y By (W e wu;.
i€C* i,jEC*

We will denote by A(C,w,e*) the complex numbers A such that there exists ¢ € C*, ¢ # 0,
satisfying (5.1).

The results of Shizuta and Kawashima[15] can directly be generalized to parameter dependent
situations. The smoothness of compensating matrices is indeed a consequence of their explicit
representation using matrix operational calculus[15].

Theorem 5.1 The following properties are equivalent
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(Spey) There exists a compensating matriz K defined and C* over L1"1xK_ .. For any w € $471
and any ¢ € K_., the matriz K(w,€e*) is real, the product K(w,e*)Ag(W*€*) is skew-
symmetric, K(—w, e*) = —K(w, €*), and the matriz

K(w, ) A (Ww, e) +B (W<w,e) +L (W<e),
is positive definite.

(Spey) Let ¢ € iR, ¢ #0, w € X471 and ¢* € K_.. Then all eigenvalue A of A(C,w,e*) have a
negative real part.

(Spe;) Let ¥ € R™\{0} such that B (W*w,e")¥ = L (W*e)¥ = 0 for some w € %41,
e € K_.. Then we have (Ay(W*ee* )W + A" (W*w, e*)¥ # 0 for any ¢ € R.

(Spey) There exists § > 0 such that for any ¢ €iR, w € R4 ¢* € K_., and any eigenvalue \ of
A(¢,w, €*), we have
I¢I?
L+[¢]*

R(\) <0

Remark. It is not known if the matrix K(w,€e*) is the form >, . K J(e*)w;. Nevertheless, in
practical applications, it is generally possible to obtain compensating matrices in this form.

5.2 Global existence and asymptotic stability

We now investigate the existence of solutions globally in time around equilibrium states. We
assume that the system is stricly dissipative in the sense of 5.1 and the source term is dissipative
in the following sense[10].

(Dis1) The matriz Ag(W* €*) is symmetric positive definite, the matrices A, (\W*¢e*), i € C, are
—x t —x
symmetric, we have the reciprocity relations B,;(W*Se*) = B;;(W*(e*), i,j € C, and the
matriz L (W*¢e*) is symmetric positive semidefinite, for any e* € K_.

(Disy) The linearized system is strictly dissipative in the sense of Theorem 5.1.

(Dis3) The smallest linear subspace containing the source term vector Q*(V*e*), for all (V% e*) €
O\ver)» 18 included in the range of L*(V*€®), with L* = (B W*)® T (V*€ e*) Dy W,

Disg) For anye* € K_., there exists a neighborhood of (V*€*), in O ,. .\, and a positive constant
€ (V5er)
0 > 0 such that, for any (V*¢€*) in this neighborhood, we have

SO (VEe)|® < —(VF = VS QE (Vv en).

Theorem 5.2 Let d>1 and 1>[d/2]+2 be integers and consider the system(4.4). Then there exists
b>0 small enough such that if W*O satisfies |[W*0 — W*e||,<b, there exists a unique global solution
W* for any €* € K_. to the Cauchy problem

AW + > A oW = Y 0,(B0,W)+T +Q,

i€C* i,jEC*
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with initial condition
W*(0,z) = W*(x),

and
Wi — Wi e ([0, 00), WE(RY)) N CL([0, 00), Wi (R?)) N L2 ((0, 00), WA(R?)),
W — Wie e €0([0, 00), WE(R?)) N C([0, 00), Wi 2(RY)) N L2((0, 00), W4T (RY)).

Furthermore, W* satisfies the estimate
t
* xe (|2 * 2 * 2 * xe (|2
W™ (t) — W*]|; +/0 (10Wr (Tl + 10 W3 () [[7) dT < CIW*® — W= e[,

uniformly in €* where C' is a positive constant and sup,cps \W*(t) — W€| goes to zero as t — oo
uniformly in €*. Finally, emphasizing the dependence on €* by denoting W*(t,x,€*) the solution
obtained for €* € K_.. we have for any a* € K_.

lim  sup [W*(¢, -, €") = W (¢, -, &) ci-qraszrs2) = 0.

e —a*
e ek .« t20

€

The main idea is that all usual estimates can be made uniform with respect to the parameter ¢*
since we are considering a compact set K_.. Thanks to the local existence theorem and to uniform
estimates, global solutions are obtained for all ¢* € K... Furthermore, continuity with respect
to the parameter €* is a consequence of the continuity over finite time interval and of uniform
asymptotic stability. We define for convenience N;(t) = N;(0,t) where

ta
Ni(ti,t2)? = sup |[W*(7) —W*| + / (02 W; (B)1I7-, + 9. W5()]]7) dt.
1

t1 STt
Lemma 5.3 Let " denotes the modified entropy
TH(W3ie') = 0" (Wie') — 0" (W' €*) — (y- o™ (W e")) (WF — W*).
There exists a neighborhood B of W*¢ and constants ¢ and ¢ such that
YW* B Vet € K., W —W*]2 <7 (Whe*) <elW* — W2,

Lemma 5.4 Let d > 2,1 > [d/2] + 1 and B a bounded neighborhood of W*¢. There exists a
constant Bo(*B) independent of €* such that

Ve* € K., Ni(1) < Bo(B) = W* € B, (t,z) € [0,7]xR%.

Proposition 5.5 Let d > 2, | > [d/2] + 2 and assume that W*°(x) is such that W*Y — W*¢ ¢
WE(RY). Assume that W* is a solution over [0, 7] such that

Wi —Wzee O([o, 7], Wi(RY)) nCt([o, 7], Wa~ ' (RY)),
Wi — Wie e CO([0, 7], WE(R®)) nct ([0, 7], Wi 2(R)) N L2((0,7), Wat! (RY)),

and that Ni(1) < Bo(B). There exists constants b’ < [o(B) and C' > 1 independent of €* such
that
Ni(1) <V = Ni(7) < C/HW*O — W*eHl.
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Proof. The proofs of Lemma 5.3, Lemma 5.4, and Proposition 5.5 are similar to the situation
without parameter[12, 10] thanks to the compacity of the set K...

_ We now apply the local existence Theorem 4.6 with Op = B, any d; > 0 such that 0 < d; <
d(Op, 00w~ ), and by = Fo(B). There exists a local solution defined over [0,7] for any e* € K..,
whenever |[W*? — W*¢||, < by, and from Theorem 4.6 we also have estimates in the form

Ni(7) < CIIW*? — W<,
where C' > 1 depends on O1, by = (o(B) and K_.. Let then
B . % %
b= lnf(a, —Cl(l i 02)1/2)a

where b’ and C” are given by Proposition 5.5 and assume that [|W*® — W*¢||, < b. For any €* € K_.,
we first have a solution defined on [0, 7] such that

Ni(7) < CIW™ = W[, < Cb < < b = fo(B).
<

Since N;(7) < b’ we also have Ny(7) < C'|W*® —W*¢||, < C’b. We can now start again from
W*(7) at 7 since ||[W*(7) —W*¢||, < Ni(7) < by and we have a solution defined on [7,27] with
Ni(7,27) < CN((T). As a consequence, we obtain that

Ni(27) < (1+C?)2Ni(7) < (1+ C2)2Ch < ¥ < b,
so that from Proposition 5.5 with 7 = 27 we obtain
Ni(27) < C'b <V < by

We can start again from W*(27) at 27 and an easy induction shows that the solution is defined for
all time and that for any ¢ > 0 we have N;(t) < C'||W*0 — W*¢||, uniformly for e* € K_...

We emphaze now the dependence on €* by denoting W*(¢,x,€*) the solution obtained for
€t € K... We introduce ®(t,e*) = ||0,W*(¢,-,€*)||?_, and it is easily established that for any
e € K.

/ |<I>(t,e*)|dt+/ 10,8(t, )] dt < CIW — W],
0 0

where C is independent €* so that lim; .o [[0;W* (%, -, €")][i—2 = 0 uniformly in ¢ € K. Let
then o* € K.. and let @ > 0 be given. From these estimates, we can find a time 7, such
that ||0.W*(¢,-,€")|li—2 < a/2 for t > 7, and €* € K_.. This implies that |0, (W* (t,, ") —
W*(t,,a*))[i—2 < a for any t > 7, and any €;a* € K... On the other hand, we have (I, — 1)7 <
To < I, 7 for I, large enough and we can divide the time interval [0, I, 7] into the union of intervals
in the form [i7, (i + 1)7], for i = 0, I, — 1. We can now apply the estimates (4.7) to deduce that
sup  [W (7, ") = W (7, a") 1y < (L+0)* 6,y (e1a”) =0,
0,<7< 1,7
so that as €* — a* in K_., W*(¢, -, €*) converges uniformly in ¢ € [0, I, 7] to W*(¢, -, a*) in the Wéfl
norm. We have thus established that
lim SUP”aT(W*(ta'ae*) _W*(t7'7a*))”l—2 = 07

e —a*
e eK t20

and using the interpolation inequality ||¢||ci-a/2+2 < Co [|0L1¢[|& ||4]l5~“, we conclude that
lime« o+ SUP;>q IW*(t, -, ) — W*(t, -, a*)||cl_([d/2]+2) =0. O
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5.3 Decay estimates

Uniform decay estimates can be obtained thanks to the compacity of K_.. These estimates can
then be used to improve the the continuous dependence on the parameter by using the space ngfl
instead of ¢!~ ([4/2+2),

Theorem 5.6 Letd > 2,1 > [d/2] + 3 and W*°(z) be given, such that
W0 — W*e ¢ Wi(RY) N LP(RY),

with p € [1,2). Then, if [W*® —W*¢||, and ||W*® —W*¢||,, are small enough, the unique global
solution to the Cauchy problem satisfies the decay estimate

IW* () = W[l S CAL+H77 (W =Wy + [W =Wl ), 0<t,

uniformly in € € K_., where C is a positive constant and v = d(1/2p — 1/4). Finally, for any
a* € K. we have
lim —sup [[W*(t, - €") = W*(t,-,a")[;_, = 0.

ef—a*
e eK « 20

Proof. The proof of decay estimates is similar to the case without parameter[12, 10] thanks to
the compacity of the set K... These estimates combined with those of Theorem 5.2, implies that

tlim IW*(t,-, ) — W*¢|[;_1 =0,

uniformy for €* € K.., and we can proceed as in the proof of Theorem 5.2. m

Remark. Decay estimates can also be obtained uniformly for d = 1 provided that estimates[12]
about the exponential of (A)~1/2 (CK* — B+ E*) (Ag)~1/2 at (W*, e*) can be obtained around
¢ = 0 uniformly in €*.

6 Symmetrization for ambipolar plasmas

We investigate in this section symmetric forms for the system of partial differential equations
modeling ambipolar plasmas (3.5).

6.1 Entropy and symmetric conservative form

We define the mathematical entropy o by

U:_Z "/IcSk7 (6.1)

keS R

where the 1/R factor is introduced for convenience, and the corresponding entropic variables V
reads 1

_ t
V = (0yo)" = T

t
1 1
(Gl — 5M1VV, ..., Gps — 5Mps V-V, 01, V2, U3, —1) . (6.2)
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Theorem 6.1 The function o is a mathematical entropy for the system (3.5). The map (U,€) —
(V,€) is a C* diffeomorphism from O,e) onto Oy ) = Oy x O, where O = R™+3 x (—00,0) is
independent of € and O, = (0,€) is independent of V. In addition, this diffeomorphism admits a
smooth extension up to €e =0 and € = €. The system written in term of the entropic variable V

AoV + Y AN = Y 0i(Bi;0V) + 9,
ieC i,j€C

with

/K\Q = 8\/U7 Ai = Aia\/U, Bij = BijaVU and ﬁ = Q,

is of the symmetric form, that is, the matrices ;&0, Ki, i €C, and éij, 1,7 € C, verify properties
(S1-S4). The matriz Ay is given by

(VkOkt )k les Sym
Ao = | (umuvi)iccics (pRT'6;5 + X12v5v5)iec, jec ;

(ME[*)ies (PRTvj + Xpmevj)jec Yo
where
Ern2 = Z "/kmz, Eme = Z PykmkE]zOta
ke keG
Te =Y W (EP)? + RT (v + C,T).
kes

Since this matriz is symmetric, we only give its left lower triangular part and write “Sym” in the
upper triangular part. Denoting by &€ = (£1,&2,&3)° an arbitrary vector of R3, the matrices A,
1 €C, are given by

(VkOkiv-€)kics Sym
D &A= | (umiwv-€ + uRTE)iccics Sro ;
icC

(MH["v-€)ice Yho YThv-€

with
Swn = Y wmkHE Th =Y w(HP)? + RT(pv-v + C,T).
ke& keSS
oy =Em2v@vv-€ + pRT(v-€ 3,3 + v + &)
Zh,v = (Emh + pRT)'US 'Ut + RTHtOtSt

Moreover, we have the decomposition

Bij = 0;;RT BP + kRT By, + nRT B},
with R
(Dravivi)kies Sym
go_ 1 O3, 0
BY = — N 3, 3,3
P (X vDw(pxe +'Yka))l€6 013 Tp
kES

)
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where R
Yo =T+ Y Dulpxe +vwHe)(pxi + v Hi),
kS
and denoting by &€ = (51,52,53)" and ¢ = ((1, Ca, (g)t arbitrary vectors of R3, the matrices éfj and
B”

ij» 1. J € C, are given by

Ons ,ns OnS ,3 OnS ,1

DTGB = | 05 €3¢ vEC |,

1,j€C Ol,nS 'U'ECt v-§vC
and
Ops s Ops 3 Ops 1
Y GGBL = | Osw  &Clzs+CRE— 260C  £Cv+vCE— 20€C
niec O &€v°+0CE" —Jv€C" &Cvv+ gubol

Proof. The matrices ;‘:0, /K\i, 1 € C, and Eij, 1,j € C, are easily evaluated by using the natural

variable Z. These matrices are symmetric, and we note that Ag is positive definite since for any
vector z of R +4

</K\0x, z) = RC,T?x%. , + pRT Z(xnwr“ + VT 1)

nec
2 : 2 : tot 2
+ Yk (ﬁrk + my VpTns4p + Eko xns+4) .
ke® pnecl

Similarly B is positive semidefinite since we have

ém, T 1 ~
{ ) _ 1 Z Dt (ke + (veHrk + pXk)Tro44) (Vi + (nHi + pXi)Tns 14)
RT P
kleS
2
+AT‘/'E37,3+4 +n Z(xn”rv + qun5+4)2 + (K + %77) (Z §u(Tps 0 + qun5+4)) .
veC vel

From the equivalence theorem 4.3 we deduce that ¢ is a mathematical entropy. O

6.2 Normal Variable

In this section we investigate normal forms for system (3.5). We first establish the nullspace
invariance property.

Lemma 6.2 The nullspace of the matriz
é(V7€,5) = Z éij(v)fifj
i,j€C
is independent of V € Oy and &€ € X2, where X2 is the unit sphere in three dimensions. For any
e € [0,¢ this nullspace is given by
N(B) = Rm & Rz,
where m = (m,0,0,0,0)%, % = (5,0,0,0,0)°, and we have gij (V)N(g) =0,4,7€C, forVe Oy,
€ € [0,00).
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Proof. The expression of (Bx,z) in the proof of theorem 6.1 yields that (Bz,z) = 0 if and only
if xns+1f(), s +2=0, Tps13=0, Tps14=0, and (x)res € N(D). By using lemma 2.1, we deduce
that N (B) is spanned by m = (my,..., My, 0,0,0,0)" and 32 = (3¢, . ., 2,,0,0,0,0)". It is then

easily checked that éij (V)N(B)=0,i,j€C, for Ve O, and € € [0,00). o

Making use of the explicit basis of N (§) we define the matrix P from

mq %10 ...... 000O00O0
mg%go ...... 000O00O0
. .0, .
P= 0 : ::: (6.3)

My s 0 ... 0 10000
0O 0 0...... 01000
0O 0 0 ...... 00100
0 0 0 ...... 00010
L0 0 0. ... 00001 |

From Lemma 6.2 and from assumptions (Th;-Ths), assuming for instance that the first species
is neutral and the second has a positive charge, it is easily checked that the matrix P is always
nonsingular, that the first two columns are spanning N(B), and that P is a smooth function of
e € [0, €.
We may then introduce the auxiliary variable U’ = P*U and the corresponding entropic variable
V' = P~V given by
U = (0,0 V35 -+ Yo » PUL, PU2, pU3, € + S pw-v)”

and
vV — 1 #9G1 — 211G 1 maoG1 + mi1 G VA VA K
- —5'1)"0, s Vi3y ooy 77,557]171)271)37_1 )
RT oMy — 112 M1 — X113
where
= Gr — Gy — 5,.Ga, 3< k<,
and
M — ETN2 My — XMk
Tk = 3 Sk = ) 3 < k < n’.
XM — 112 MMy — X112

From Theorem 4.5, normal variables are in the form W = (¢(U1, €), ¢, (V}, e))t where U] is the
first two components of U’ and Vj; the last n° + 2 components of V'. For convenience, we choose
the variable W given by

t
W = (p7 q,10g(v3/11*75%), - .- ,log(’yns/vf"s’yé"s),vl,v%va,T) . (6.4)

Theorem 6.3 The map (V,€) — (W, ¢) is a C* diffeomorphism from Oy, .y onto Oy = O, , %

pa
R™*1 x (0,00), where

. g A
Opq:{(U1,U2)ER2; up >0, min—wu; < ug < max — uy }.
: keS My k€S my
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This diffeomorphism admits a smooth extension up to € =0 and € = €. The system written in the
W wvariable

KoatW + ZR@ZW = Z 51(§U5JW) +7 + ﬁ, (6.5)

ieC i,jec
where KO = aV\/Vt /Z\Q 5\/\/V, Kl = 8\/\/Vt RZ‘ 5\/\/V, 1 € C, Eij = 8\/\/Vt éij 5\/\/V, i, € C, T =
_Zi,jec 0; (6WVt) Bi; owV O;W, and Q = owV® Q, is in the normal form. The matriz Ay is

given by
X _ l KBI Sym}
0= —ILI |
Ons 2,2 Ag
with
—I1,11
' S
A ; .o —Xo. R OA . ym
o 2%227”12 - Z?’nu _Em% Em2 ’ U 3m*=2 RT3,3 ’

c
O1ns—2 O13 372

2 2
Ern2 = E Yy, Em% = E Ve, 2%2 = E Vi
keSS keS keSS

— LI, . . . .
and A7 is the square matrixz of dimension n® — 2 whose coefficients are

— 11,11 MEMm2,2 — (mk%l + mmk)Em,, + s D2

Akt = Y60k — Ve S . 3<kI<n.
Denoting by & = (£1,&2,€3)° an arbitrary vector of R3, the matrices A;, i € C, are given by
Ops s Sym
Z&Kz‘ =Awwé+ | A" 033 )
icC 01 2s€® 0
where A has its columns given by

—a by - Em.% Em
AL 71(1 LR (ps + muq) + g 2ip,2

YN — X2 )€v3§l<ns.

The matrices Ej have the structure Eij = 5¢j§D + Efj + E?j and denoting by & = (51,52,53)t

and ¢ = (1, ¢, G3)" arbitrary vectors of R, the matrices Efj, Eﬁj, 1,7 € C, are given by
Ops s Ops .3 Ops 1
> GG B +BY) = 5 | Vs 16Clas+nCEE+ (k= E0)ERC O3y |
ijec 01, 01,3 01,1
and the matrix §D s given by
02,2 Sym
50 _ 1 Ops—2,2 RT?(Dravevt)s<hi<ns
pT | O3z 03,n5—2 03,3 ’

Oz (Xhes 71Dkl(7kRT+ka))3glgns O3 Ty
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1 ~
15 = 575 (ApT + Y Dulpxr + RTv)(pxi + RTW)),

2
RT k€S
and finally
— 1 t
0= (0,07w3, ey we,0,0,0, == 3 Ekwk) .
ke&
Proof. These are consequences of lengthy calculations and of Theorem 4.5. m

7 Asymptotic stability for ambipolar plasmas

In this section, we investigate the asymptotic stability of equilibrium states for the system (6.5)
modeling ambipolar plasmas as well as the limit of vanishing electron mass.

7.1 Main result
We consider the system (6.5) written in the W = (W,*, W,,*)" variable, with the hyperbolic variable

W, = (p,q)",

and parabolic variable

t
Wi = (1Og(73/7137§3)5 s 710g(7"5 /n 75”5)’U1’ 2, U3, T) '
The following result is a direct consequence of the axiomatic structure of thermochemistry[7, 10].

Proposition 7.1 Let a temperature T¢ > 0, a velocity v¢ € R3, a mole density vector v¥ > 0 be
given, and assume that properties (Thi-Ths) hold. Then there exists a unique constant equilibrium
state U® such that

Q(U°) =0, (7.1)

in the form U® = (7§, ..., 7%, p°uf, pvs, p°us, pee(T¢) + %peve-ve)t and such that v¢ € (vF +R)N
(0, +00)™ .

Note that this equilibrium state is independent of the reduced electron mass €. In addition,
whenever v/ is such that ¢/ = (yf,%) = 0, we obtain ¢* = (v¢,5) = 0, since » € R+ and
v¢ € v/ +R. The equilibrium state corresponding to the various variables are also denoted with
the superscript ¢, so that the equilibrium states in the variables V and W, for instance, are denoted
by V¢ and W€, respectively.

Theorem 7.2 Let d > 1 andl > [d/2] + 2 be integers and consider the system (6.5). There exists
b > 0 small enough such that if [W® — W¢||, < b, there exists a unique global solution W for any
€ € [0,€ to the Cauchy problem

A0dW + > AW = > 0i(B0,W) +T + 9,
ieC i,j€C
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with initial condition
W(0,2) = WO (a),

such that

W, — We € C0([0, 00), WE(RY)) N C([0, 00), Wa ™ (RD)) N L2((0, 00), W(RY)),
Wy — We € €°([0, 00), WE(R®)) NC([0, 00), Wi~ 2(RY)) N L2((0, 00), Wi (RY)).

Furthermore, W satisfies the estimate
2 K 2 2 2 2
IW() —We; +A(|‘8wp(T)||l71 +10za() iy + 190 ()]} + 02T (7)];) d7

t

Tr Sk 2 e

£y / 182 log (/A5 ) (D[P dr < CIWO — we ),
0

3<k<ns

where C is a positive constant and sup,crs [W(t) —W®| goes to zero ast — co. Finally, emphasizing
the dependence on € by denoting W(t,x,€) the solution obtained for e € [0,€], we have for any
a€[0,¢
lim sup HW(t, ‘y 6) - V\/(t7 ‘ a)Hcl—([d/2]+2) =0.
€—a >0
Physically relevant solutions correspond to initial conditions such that ¢° = 0 and equilibrium

states such that ¢¢ = 0, since in this situation we easily recover that ¢(¢,z) = 0 for any ¢t > 0 and
r € Re.

Theorem 7.3 Letd > 2,1 > [d/2] + 3 and W°(z) be given, such that
WO —we e WH(RY) N LP(RY),

withp € [1,2). Then, if [W° — W¢||, and [[W® — W¢||,, are small enough, the unique global solution
to the Cauchy problem satisfies the decay estimate

IW(E) = Well,y < CA+ 57T (W = Wy + [WO = We|,) , ¢ € [0, +00),

uniformly in € € [0,€] where C is a positive constant and v = d(1/2p — 1/4). Finally, for any
a € [0,€ we have
lim sup ||W(t7 '76) - W(t7 '70‘)Hl71 =0.

€= >0

7.2 Proof

The system of partial differential equations modeling ambipolar plasmas has been written into a
normal form in Theorem 6.3. The coefficients of this normal form are smooth functions of W and
of the parameter € € [0,€]. Moreover, the equilibrium state is independent of e. As a consequence,
we only have to establish that properties (Dis;-Diss) are satisfied.

The linearized system around the constant state W€ reads

Ag(WE€)o,w + Z A; (WS e)Ohw = Z B (W¢e€)0;0;w — L(WE €)w,
i€C i,j€C
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where L = —Q\Nﬁ and w = W — We. Property (Dis;) is a direct consequence of the following
expression of L(W¢e) at an equilibrium point
LWee) = Y K5 7,07,
reR
where 7, = (0,0,03,...,Vmp,0,0,0,— Y. v Ey/RT?) and fJACi = X5 exp(vi, i), obtained di-
rectly from Q or from the expression of L(W¢e) given in Giovangigli and Massot[10, 7]. Properties

(Dis3) and (Diss) are also established in Giovangigli and Massot[10, 7]. In order to examine if
(Disp) holds, the most convenient way is to use property (Spe;) of Theorem 5.1.

Proposition 7.4 For any equilibrium state W® we have
N(B(WSE,€)) = Re' @ Re® € N(L(Wee)),
and if the equilibrium point W is such that ¢¢ = 0, there exists nonzero vectors U of Re! @ Re?

such that (Ag(WS €)W + A(WSE, €)W = 0 where ¢ is real.

Proof. From the normal form established in Theorem 6.3, introducing the coordinates (11},), g

of the vector (v, Hy, + pxr)res With respect to the basis (m, »,e?,...,e" ), we have

(Bz, )
RT

1 -
- = Z Dy, (’ykxk + /,L;ans+4) ("ﬂxl + uﬁxns+4) + ATx,QZS+4

L

2
+77 Z($n~9+u + Ul/x77,5+4)2 + ("f + %77) (Z fl/ ($n5+u + Ul/x77,5+4)) )
vel vecl

and this yields N (B(W$&,€)) = Re! & Re?. From the expression of L(W¢e) it is easily checked
that Re! ® Re? C N(L(WSe)). A direct calculation yields

0412;«(2 — 25 (C v E) QQEmQ — 01 X
E%2Em2 — E?n% ’ ExQEmz - E?n% ’

(Ro + B)(are! +aze?) = ((¢+v€)

p(alz;ﬂ - QQme) + q(O‘QEm2 - alzmx)
S — 52

0,...,0, S“,O),
and selecting ( = —v-§, @1 = S, @z = B2, U = agel +age?, it is easily checked that (AW +
AV =0 when ¢ = 0. m

This problem, however, is artificial and due to the lack of dissipativity properties associated with
the electric charge equation, which must guarantee that the charge remains zero. Two equivalent
form can be introduced for the system governing ambipolar plasmas, that is, such that regular
solutions coincide, and which guarantee strict dissipativity.

One can first modify chemistry production rates € in the form

[ ﬁ(l) + 5(2),

where 0 is the previous source term given in Theorem 6.3 and 0 is defined by Q® = E(Z)W,
with
0 0 01,ns42
E(Q) = 0 o 017n5+2 )

Onst2,1 Onsyo1 Opsyonsto
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where a > 0 is a positive parameter. In this situation, the nullspace of B(W¢¢, ¢) is unchanged,
but e? is not anymore in the nullspace L(W¢¢) so that

N(B(WSE,€)) N N(L(WSe)) = Re',

and strict dissipativity is then easily established. Note that the corresponding charge equation
reads
94 + 0z(qu) = —ay,

and contains a consumption term —aq. This equation, of course, guarantee that the charge remains
zero if ¢° = ¢¢ = 0, so that physical solutions of the modified system coincide with physical solutions
of the original system.

A second modification, which has interesting numerical consequences[5], consists in modifying
the diffusion coefficients. The resulting charge equation then contains a diffusion term and only
one hyperbolic component remains. More specifically, we modify the matrices Ej, 1,7 € C, in the
form = s, =)

BijZBij +4,;B77, 4,5€C,

where §£J1-) is the previous matrix given in Theorem 6.3 and E(z) is defined by

—(2) 0 0 01,77,5+2
B = 0 « 01,77,5+2 ;
0n5+2,1 077,5+2,1 0n5+2,ns+2

where o > 0 is a positive parameter. In this situation, the nullspace of B(W¢¢, €) do not contains
e? and the nullspace L(W¢e) is unchanged so that

N(B(WSE,€)) N N(L(WSe)) = Re',
and strict dissipativity is obtained. The corresponding charge equation now reads
atq + 8:0'((]'0) = 8w'(048mQ)7

and the diffusion term 8,-(@8,q) as a stabilizing effect[5]. This equation guarantees again that the
charge remains zero if ¢° = ¢¢ = 0, so that physical solutions of the modified system coincide with
physical solutions of the original system. Of course, both modifications could also be combined.
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