Introduction to Continuous optimization
Assessment
(6th January 2021)

Exercise 1

We denote R I the space of dimension n(n+1)/2 of symmetric n X n matrices.
We consider the scalar product X : Y =37, - X; ;Y ; = Tr (XY) (or Tr (XTY)
but it is the same here since X, Y are symmetric).

Let S C R be the set of n x n symmetric, positive semidefinite matrices:
X = XT, (X¢)- ¢ >0 for any € € R™. Let S, be the interior of S, that is,
the set of positive definite matrices: (X¢)-& > 0 for all £ # 0.

We let, for X € RIX™:

Sym

h(X) :=

—Indet X ifX€S++7
400 else.

1. Let X € S;4, H a symmetric matrix. Show that for ¢ € R with |¢| small
enough, X +tH € S; 4.

For ¢ a vector, one has (X +tH)£)-& = (X&)-E+t(HE)-E > (M(X)—t|H|)|E)> >
0if t < A\ (X)/||H||, where A\;(X) > 0 is the smallest eigenvalue of X.

2. Using X +tH = X(I +tX'H), show that
Vh(X)=-X"1

We recall that det(I +A) =1+ Tr A+ o(||A]]).

We have:

h(X 4+ tH) = —Indet(X (I +tX ' H))
= —In(det(X)det(I +tX 'H)) = h(X) — Indet(I +tX ' H)
= W(X)=In(1+tTr (X " H)4o(t)) = h(X)—tTr (X ' H)+o(t) = h(X)—tX ' : H+o(t)

which shows the claim.

3. One now wants to compute the conjugate h*(Y) =supy X : Y — h(X).

Let Y € R and assume e is an eigenvector of ¥ with eigenvalue A € R
(and le] = 1).

Considering first X of the form te ® e + eI (where for e € R™ \ {0} with
le] = 1, e ® e is the matrix e;e; which has eigenvector e with eigenvalue 1),
e >0, t = 400, show that h*(Y) = +o0 if A > 0.

Deduce that domh* C {Y : =Y € S;4}.

One has, for X = te®@e +¢el, det X = e" Yt +¢) and X : YV — h(X) =
eTr X +tA + (n — 1)Ine + In(e + t) which goes to +oc0 as ¢t — oo if A > 0.
Hence, h*(Y) < 400 only if all eigenvalues of Y are strictly negative, that is



4. Now, assuming —Y > 0 we admit (even if it is quite easy to show) that
supy X : Y — h(X) is reached at some positive matrix X.

Show that X = —Y ~!. Deduce the expression of h*. Deduce also that h is
convex.

At the maximum X one has Vx (X : Y — h(X)) =Y — (-=X~1) = 0 so that
Y=(-X"1)e X=-Y"! Then,

X:Y —h(X)=Tr(-Y'Y) +1Indet(-Y ') = —n — Indet(-Y).

In particular, the function

Yo {n —Indet(-Y) if —Y eS8,y
400 else.

is convex, and so is h(X) =n + h*(—X).

5. We consider the problem minxes, C': X and the Bregman distance
DX, Y)=h(X)—h(Y)—-VR(Y): (X -Y)

induced by h, defined for X|Y € Sy,. Write the expression of an iteration of
non-linear gradient descent for the problem, with step 7 > 0, relative to the
Bregman distance Dj,. Why can we always assume that C is symmetric? What
assumption is needed on C' in order for the problem to have a solution (and the
algorithm to be well defined for all k)?

XF+1is obtained as (if it exists)
1
Xkl — argH}}n “Dp(X, X"+ C: X
T
and satisfies: —(X*+1)~! = —(X¥)~1 — 7C| that is
Xk+1 _ ((Xk)—l +7'C)_1

If C is not symmetric then C : X =CT : XT =CT: X = (C+CT): X/2 s0
one can replace C' with its symmetric part. If C' has a negative eigenvalue, as
in the analysis of the previous question, the minimum problem has no solution
(the value is —oc) as soon as (XY)~! +7kC has a negative eigenvalue. If C' > 0,
the iterates are X* = ((X°)~! 4+ 7kC)~!

Exercice 1I - prox
Compute the proximity operator (for some parameter 7 > 0):
1
prox, (z) = argmzing(z) + Z‘Z —z/?

for the convex functions:

1. ¢gi(z) = —Ilnz for > 0, 400 else;

The equation is 2 — x — 7/2z = 0, that is 22 — 22 — 7 = 0, that is z = (z +

VaZ441)/2.



2. ga2) =20 gluil’, (z €R™);
The problem is: .
min ) gz + %\Zi —af?
i=1
and can be minimized independently for each 7: the minimizer satisfies
tsign (z;)22 + 2z —x; =0, i=1,...,n.

Clearly the sign of z; is the same as the sign of x; (as 7sign (z;)22 + 2z; =
z;(T|zi| + 1) has the same sign as z;). Solving the equation one obtains:

I+ 47|z -1

21 = sign () L
.

3. g3(x) = Z?:l %|$i|3/27 (x € R™);

g3 = g5 and one has the Moreau identity:

prox, .. (z) = x — 7proxu g (7).

93
Hence,

1 4 “’L‘ 71 2 4”1‘
o1 = arsign (a) VT WO/ =1 oo (g T2 YT Al

2/7 2 2

2

Alai| + 72+ 72 — 27 /72 + d|a; V2T Ay —
= sign (z;) o £t T 1 TV |x|=sign(xi) (T —|—2|:1:| T)

The last expression is the one which is obtained directly if one solves the mini-
mization problem (without using Moreau’s identity).

4. gy(z) = 33,27 if2; > 0,i=1,...,n, and +oo else, defined for z € R"

(and with domain dom g4 = [0, +00)™).
One solves:

1
: 1.2 2
min E 525 + —|z; —x;
2, >0 & 27 27_| 7 7«|
3

which is solved independently for each i. The solution is z; = 0 if x; < 0,
otherwise, (14 7)z; — z; = 0, that is, z; = x;/(1 4+ 7). Hence, z; = 7 /(1 +7).

Exercise III - rate for the proximal point algo-
rithm

We consider M a maximal-monotone operator, defined in a Hilbert space X.
Given z° € X, we let for k > 0:

o = (I + M)~ 12”

that is, the iterations of the proximal-point algorithm.

)



1. Let z* be a zero, that is, a point such that Mz* 5 0 (we assume the set
M~1(0) is not empty). Show that z* = (I + M)~!(z*) and that

|£Ck+1 _x*‘Q + |.’Ek _xk+1|2 < ‘.’Ek —(E*|2.
One has z* + 0 = z*, hence x* + Mz* > z*, that is 2* = (I + M)~ !(z*).
Denoting Jys = (I + M)~ we know that Jy; is “firmly non expansive”:
\Jax — Ty |2+ |(T = Ja)z — (I — Ty |2 < |z — 2|2
With = 2% and 2’ = z* this gives the desired inequality.

2. Show that |#FT! — 2*| is a decreasing function of k > 0.

This is even easier: if k > 1, [2FT1 — 2F| = |Jpa® — Jppab=1] < |aF — 2F-1

since Jjs is one-Lipschitz.

3. Deduce that
|20 — a¥|

NS

We sum the inequality of the first question:

|l,k+1 —llfk‘ <

k
|xk+1 —.’L‘*‘Q—FZH’Z _J;l+1‘2 < |$0 _]/,*‘2
=0

then we use the second question to observe that 3 ot — 212 > (k41)|z% —
k+1 |2
x .

4. Let 2% be a (weakly) converging subsequence, to some point Z. Show that
for any 2’ € X and vy € M1/,

Deduce that 0 € M z.

Since M is monotone and z* —z**! € Ma*+1 (o — 2kt y — (aF — 2FH1)) >0
and in the limit, thanks to the previous estimate, we obtain the inequality (we
have a product (weak convergence)x (strong convergence)).

Since M is maximal-monotone, it means that 0 € MZ (otherwise one could
extend the graph). (Of course, using Opial’s lemma, one can then show that
¥ — z, weakly.)

5. Let T : X — X be a 1-Lipschitz operator and, for § € (0,1), let Ty =
(1—-0)I+0T. Let z* be a fixed point of T' (and therefore also of Ty for any 6).
We now consider the algorithm given by

T = Tk,
Use the parallelogram identity to show that:

‘xk-i-l —$*|2 < |5L'k _x*‘Q _9(1 —9)|Ta:k —C(,'k 2



One has
|:L'kJrl =1 - 9)(:L’k —z")+ H(T:L’k — )2
=(1-0)2" —2** +0|Tz* — 2% — 0(1 — 0)|Tx* — 2*?

and one uses |[Tz* — z*| = |Tx* — T*| < |z* — 2*| to conclude.

6. As before, deduce that:
|2° — 2|
VIO —0)WVE+1

(Remark: in this framework, one can show [Baillon-Bruck 1996] that a similar
estimate holds in any metric space, but it is much harder).

|Tzk — 2| <

As in question 2., one has |zF*+1 — 2F| < 2% — 2F~1| for k > 1, using that T} is
1-Lipschitz. We deduce [Tz — x| < |Tz*~1 — 2*~1|. Thus,

k
0(1 - 0)(k +1)|T2* — 2*10(1 - 0) > |Ta! — | + |a* T — 2% < |20 — 27|
=0

7. Application: show that the over-relaxed proximal point algorithm:
e = (I4 M)tz
zF = gk 4 )\(xk"'% _ a:k)
for 1 < A < 2 is a converging method.
We know that (I + M)~ =1I/2+ R/2 for a 1-Lipschitz map R. Then,
gl =gk 4 %(Rmk —zF)=01- %)xk + %ka = R%mk

is the iteration of an averaged operator, and we can use the previous results to

show that zF+1 — 2% — 0. Then, we can conclude as in question 4.

Exercise IV - Yosida approximation

Let A be a maximal monotone operator in a Hilbert space, and defined the
Yosida approximation, for A > 0, as

T — Jyax
A

where Jya = (I + AA)~! is the resolvent.

A)\LE =

1. Show that A, is a monotone operator.
This is because Jy4 is 1-Lipschitz. Then, for any z, v,
(Arz — Ay, z —y) = x(Jo —yl* = (Jaaz — Jaay, 2 —y)) > 0

using that (Jaxaz — Jaay,z —y) < [Jaaz — Jaayllz —y| < |z -yl



2. Show that Az = Ja-1/5(x/A). Deduce that it is (1/))-Lipschitz. Bonus:
show that it is A-co-coercive.

We use Moreau’s identity:
z=T+M) 2+ AT+ 1A (E) = Daz + Aa-1 ) (5).

We conclude using that J, is 1-Lipschitz.

3. Let z € dom A (that is, Az # 0)). Show that

lim Ayz = Apx := arg min |p|.
A—0 ngAz |p‘

Hint: first, show that if py = Ajx then py € A(x—Apy). Using the monotonicity
of A, deduce that for any p € Ax, |px|?> < (px, p), hence that |py| < |p|. Conclude
by using that A is maximal.

One has py = (x—Jxax)/A, hence (I+AA)(z—Apy) 2 , that is, py € A(x—Apy).
Since A is monotone, for any y and ¢ € Ay,

(¢ —pxy— 2+ Apa) 2 0. (%)
In particular for y = z,q = p € Ax,

(p,pa) > Ipal? = Ipal < Ipl-
Hence in the limit, if py, — p, we find from (x) that
(g—py—a)=0

and |p| < |p| for any p € Az. Since A is maximal, we deduce that p € Ax,
so that it is the (unique) element of minimal norm, and the whole sequence py
converges to p.

4. Contraction semigroup: since A) is Lipschitz, by the Cauchy-Lipschitz the-
orem, one can solve for all x € X:

X.)‘(t,az):—AAX’\(tw) t>0,
XM0,z) ==z

and the solution, which is at least C'! in time, satisfies:
t t—t’
XMt z) =a — / AyXM (s, z)ds = XMt ) — / ANX (s, X Nt x))ds
0 0

for any ¢ < t. In particular, X*(t,x) = X (t —t/, X (¢, x)).

Show that for any z,y € X, t — | X (t,z) — X*(t,)|? is non-increasing.
Deduce that | X*(t,7) — X*(t,y)| < |z — y| for all £ > 0.
One simply observes that because Ay is monotone:
10
550X (o) =Xt y)l” = = (Xt 2) = X2 (ty), AKX (t2) = Xt y)) <0,
Then, we deduce

XAt 2) — XAt y)| < [XAN0,2) — XA(0,9)| = | —yl.



5. Show that t + |A\X*(t,2)| is nonincreasing. If € dom A, show that
|[ANX (t,z)| < |Apz| for all A > 0 and ¢t > 0.
Hint: use that

XMt + h,x) — XMt x) = XMt —t/, X Nt + h,x)) — XNt —t', XNV, x))
for any h > 0, t, t’ < t, and the previous question.

The contraction semi-group property shows that

| XMt + h,x) — XMt 2)| = [ XNt =, X N + h,x)) — XMt —t, XN, x))]
< XA + h,x)) — XM, )|
and dividing by h and sending h — 0 it follows
[ANX (t,2)] < [ANX(H, 2)].

Then from the inequality [px| < |p| of question 2. we deduce |A\X (¢, x)| <

6. Using question 2., show that for A\,p > 0 and for any x € X, Ayxz =
Au(x+ (p—A)Axz). Deduce that:

%IXA(MC) = XUt a)]* < (= N (ANXAE )P = [AXH (¢, 2) )

(or any similar estimate) and in particular that if 2 € dom A, |X*(t,z) —
XH(t,z)| < ClAox|+/|p — Alt for some constant C' > 0.

What can you conclude? (Without justifying everything, unless there is still
time.)

If 2= Az = Ja_,/x(x/X) (question 2.), then

1 4—1 T A 1 4-1 T

(:)Z‘L;%A_lZB%*(l_ﬁ)Z:w

2= Jaor (P2 = A (04 (1 — M) Ap)

As a consequence,
%\X’\(t, z) — XH(t )P = —2(X* = XM AL (X + (u— NANX?) — A, X")
= —2((X* + (= NAXY) = XH A (X + (0= NAXY) — A, X7)

+2(u = A) (ANX, AXD — A, XH)
<2(p— A) (ANXA AXD — A, XM

Symmetrically,
0
§|Xk(t,:c) — XH(t, )P <20\ — p) (A X" A XH — AXD)

and averaging the two estimates we get the answer. Hence the time derivative
is bounded by |\ — u|[Agx|? and the estimate follows with C' = 1 (integrating
from 0 to ).



It follows that as A — 0, X*(z,t) is a Cauchy sequence in C°([0,77; X) (for
any T > 0), which converges uniformly to some continuous path X (¢, ). This
path is a solution of 0; X + AX > 0: precisely one can show that satisfies for all
t>0: ,

X(t,x)=x —/ ApX (s, x)ds.

0



