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Exercise I: conjugate function and “prox” operator

We consider the function f : Rd → R ∪ {+∞}, d ≥ 1, defined by

f(x) =

{
− ln(1− ‖x‖) if ‖x‖ < 1

+∞ else.

1. Show that f is convex, lower-semicontinuous (lsc).
First, f is continuous in {‖x‖ < 1}, and goes to +∞ when ‖x‖ → 1, so it is lower-

semicontinuous. Then, given x, y and t ∈]0, 1[ and assuming ‖x‖, ‖y‖ < 1 (otherwise
tf(x) + (1− t)f(y) = +∞ and there is nothing to prove), one has:

− ‖tx+ (1− t)y‖ ≥ −t‖x‖ − (1− t)‖y‖ so that

f(tx+ (1− t)y) = − ln(−‖tx+ (1− t)y‖) ≤ − ln(−t‖x‖ − (1− t)‖y‖)

where we use that ‖ · ‖ is convex and − ln is decreasing. Then, as − ln is convex,

− ln(−t‖x‖ − (1− t)‖y‖) ≤ −t ln ‖x‖ − (1− t) ln ‖y‖ = tf(x) + (1− t)f(y).

2. Show that f(x) ≥ ‖x‖. Deduce that ∂f(0) ⊇ B(0, 1) = {y : ‖y‖ ≤ 1}.
One has − ln(1 + s) ≥ − ln 1 − s = −s by convexity of − ln. Hence f(x) ≥ ‖x‖. In

particular f(x) ≥ y·x for any y with ‖y‖ ≤ 1, as f(0) = 0 this shows that ∂f(0) ⊇ B(0, 1).

3. Show that for x 6= 0, ‖x‖ < 1,

∇f(x) =
x

‖x‖(1− ‖x‖)
.

Deduce that for any p with ‖p‖ > 1, one can compute x ∈ B(0, 1) with ∇f(x) = p.
Deduce an expression for f∗(p) (recall Legendre-Fenchel’s identity). What is f∗(p) for
‖p‖ ≤ 1?

The formula is a simple differentiation, as f is C∞ in B(0, 1)\{0}. Then, for ‖p‖ > 1, if
p = ∇f(x) one sees that x and p must be aligned and taking the norms, ‖p‖ = 1/(1−‖x‖)
so that ‖x‖ = 1− 1/‖p‖ ∈ (0, 1) and x = (1− 1/‖p‖)p/‖p‖.

Using that f(x) + f∗(p) = 〈p, x〉 for p = ∇f(x), we deduce that

f∗(p) = x · p− f(x) = ‖p‖ − 1 + ln(1− (1− 1/‖p‖)) = ‖p‖ − ln ‖p‖ − 1.

For ‖p‖ ≤ 1, on the other hand, we have p ∈ ∂f(0) so that f∗(p) = 0 · p− f(0) = 0.
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4. We want to compute x = proxτf (x̄) for a given x̄ ∈ Rd and τ > 0. Write the
equation satisfied by x and show that (i) x and x̄ are colinear; (ii) x = 0 if ‖x̄‖ ≤ τ ;
(iii) if ‖x̄‖ > τ , then ρ = ‖x‖ satisfies a second order equation which has two positive
solutions. Using then that ρ < 1 and ρ ≤ ‖x̄‖, give the right answer.

The problem to solve is

min
x

‖x− x̄‖2

2τ
+ f(x)

and is solved by a unique point which satisfies

x− x̄+ τ∂f(x) 3 0.

It means, either ‖x̄‖ ≤ τ and x = 0 is a solution, or, for ‖x̄‖ > τ , x 6= 0, ‖x‖ < 1 (as
f(x) is finite) and

x+
τx

‖x‖(1− ‖x‖)
= x̄ ⇔ (‖x‖(1− ‖x‖) + τ)x = ‖x‖(1− ‖x‖)x̄.

In particular we see that x = ρx̄/‖x̄‖ for some ρ > 0, and taking the norm we have

‖x‖(1− ‖x‖) + τ = (1− ‖x‖)‖x̄‖.

Denoting ρ̄ := ‖x̄‖ > τ , ρ ∈ (0, 1) must solve

ρ2 − (1 + ρ̄)ρ+ ρ− τ = 0

which has two solutions

ρ+ =
1 + ρ̄+

√
(1− ρ̄)2 + 4τ

2
, ρ− =

1 + ρ̄−
√

(1− ρ̄)2 + 4τ

2

with ρ+ + ρ− = 1 + ρ̄ and ρ+ρ− = ρ̄− τ > 0. Observe that ρ+ > (1 + ρ̄+ |1− ρ̄|)/2 so
that in case ρ̄ ≥ 1, ρ+ > ρ̄ ≥ 1 (hence ρ− = 1 + ρ̄− ρ+ < 1), and in case ρ̄ < 1, ρ+ > 1
(hence ρ− < ρ̄ < 1). Hence the right solution (giving the norm of x) is ρ−, and one can
write

x =
1 + ‖x̄‖ −

√
(1− ‖x̄‖)2 + 4τ

2
x̄.

Exercise II: The “Extragradient” method

Let X be a Hilbert space and A a maximal-monotone operator. We assume that A is
defined everywhere in X and L-Lipschitz1 (in particular, it implies that Ax is just one
point, denoted Ax, for any x).

One wants to find x∗ ∈ X with Ax∗ = 0. Let S = {x ∈ X : Ax = 0} and assume that
S 6= ∅.
1A Lipschitz maximal monotone must be defined everywhere, thanks to Kirszbraun-Valentine’s theorem.
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1. We first consider the elementary algorithm xk+1 = xk−τAxk, for τ > 0, and x0 ∈ X
given. Recall from the lecture notes the standard conditions on A and τ which guarantee
that the sequence (xk)k≥0 (weakly) converges to a point x∗ ∈ S.

This is in the lecture notes. One needs A to be co-coercive: 〈Ax−Ay, x− y〉 ≥
µ‖Ax−Ay‖2, and that 0 < τ < 2µ.

2. In general it is not clear that the algorithm in 1. will converge. Consider for instance
X = R2,

A =

(
0 1
−1 0

)
.

Show that A satisfies the assumptions at the beginning of the exercise. Evaluate ‖xk+1‖
in function of xk. Deduce that the algorithm always diverges if x0 6= 0.
A is Lipschitz (obvious), monotone since 〈Ax−Ay, x− y〉 = 〈A(x− y), x− y〉 = 0 for

any x, y, maximal: if (z, p) are such that 〈Ax− p, x− z〉 ≥ 0 for all x, for x = z + ty,
y ∈ X, t > 0, one finds that 0 ≤ 〈Az + tAy − p, ty〉 = t 〈Az − p, y〉 so that 〈Az − p, y〉 ≥
0 for all y (we have used 〈tAy, ty〉 = 0). It implies that p = Az.

Then, given (x, y) ∈ R2, we compute∥∥∥∥(I − τA)

(
x
y

)∥∥∥∥2 =

∥∥∥∥ x− τy
y + τx

∥∥∥∥2 = (x− τy)2 + (y + τx)2 = (1 + τ2)(x2 + y2).

Thus, ‖xk‖ =
√

1 + τ2
k‖x0‖ which shows the claim.

The extragradient algorithm (Korpelevich, 1976). One Considers the following two-
steps algorithm, known as the “extra-gradient” method (as it computes an evaluation
of A at an extrapolated point). Given x0 ∈ X, τ > 0, one lets for k ≥ 0:{

yk = xk − τAxk

xk+1 = xk − τAyk.

One wants to show that with this correction, the algorithm converges for τ well chosen.

3. We consider the setting of question 2.. Compute the matrix B := I − τA(I − τA).
Evaluate again ‖xk+1‖, and show that if τ < 1 the algorithm converges.

We have

B = I − τA(I − τA) = I −
(

0 τ
−τ 0

)(
1 −τ
τ 1

)
= I −

(
τ2 τ
−τ τ2

)
=

(
1− τ2 −τ
τ 1− τ2

)
One has xk+1 = xk−τAyk = xk−τA(xk−τAxk) = (I−τA(I−τA))xk = Bxk. Given

(x, y) ∈ R2, ‖B(x, y)T ‖2 = ((1−τ2)x−τy)2+(τx+(1−τ2)y)2 = ((1−τ2)2+τ2)‖(x, y)T ‖2.
Using that ((1− τ2)2 + τ2) = 1− τ2 + τ4 = 1− τ2(1− τ2) we find that if 0 < τ < 1,

‖xk‖ =
√

1− τ2(1− τ2)
k
‖x0‖ → 0

as k →∞ (with a linear rate) so that the algorithm converges.
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4. We now return to the general case where A is a maximal monotone operator, L-
Lipschitz, in a Hilbert space X. Show that if 0 < τL < 1 and if x is a fixed point of the
algorithm (meaning that if xk = x, then xk+1 = x as well), then x ∈ S.

We have, letting y = x − τAx, that x − τAy = x, that is Ay = 0 (y ∈ S). Then,
‖Ax‖ = ‖Ax − Ay‖ ≤ L‖x − y‖ so that ‖τAx‖ ≤ τL‖x − y‖ = τL‖τAx‖. Since
0 < τL < 1 this is possible only if Ax = 0, that is x ∈ S.

5. Let x∗ ∈ S. Using that A is monotone, first show (using the second line of the
algorithm) that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2τ
〈
Ayk, xk − yk

〉
+ τ2‖Ayk‖2

= ‖xk − x∗‖2 − 2
〈
xk − xk+1, xk − yk

〉
+ τ2‖xk − xk+1‖2.

One has

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2τ
〈
Ayk, xk − x∗

〉
+ τ2‖Ayk‖2.

We write (recall that Ax∗ = 0)〈
Ayk, xk − x∗

〉
=
〈
Ayk, xk − yk

〉
+
〈
Ayk, yk − x∗

〉
=
〈
Ayk, xk − yk

〉
+
〈
Ayk −Ax∗, yk − x∗

〉
≥
〈
Ayk, xk − yk

〉
.

Hence,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2τ
〈
Ayk, xk − yk

〉
+ τ2‖Ayk‖2.

We conclude using again that τAyk = xk − xk+1.

6. Deduce, using now that A is L-Lipschitz, that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− τ2L2)‖yk − xk‖2.

One has

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2
〈
xk − xk+1, xk − yk

〉
+ ‖xk+1 − xk‖2

= ‖xk − x∗‖2 + ‖xk+1 − yk‖2 − ‖xk − yk‖2

= ‖xk − x∗‖2 + τ2‖Ayk −Axk‖2 − ‖xk − yk‖2

≤ ‖xk − x∗‖2 + τ2L2‖yk − xk‖2 − ‖xk − yk‖2
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7. We now assume 0 < τ < 1/L. What can we say of the sequence (xk)k≥0? Of the
sequence (‖xk − x∗‖)k≥0 for x∗ ∈ S? Of the sequence (xk − yk)k≥0?

The first is bounded (and hence has weakly converging subsequences), the second is
decreasing (and hence has a limit), the last must go to zero, as the series

(1− τ2L2)

n∑
k=0

‖yk − xk‖2 + ‖xn+1 − x∗‖2 ≤ ‖x0 − x∗‖2

is bounded.

8. As in the lecture notes, we denote m(x∗) = limk→∞ ‖xk − x∗‖, for x∗ ∈ S. Let x̄ be
the (weak) limit of a subsequence (xkl)l. Show that Axkl → 0 (strongly). Using that A
is maximal-monotone, deduce that Ax̄ = 0, that is x̄ ∈ S. Deduce from Opial’s lemma
that xk converges (weakly in X) to x̄.

As we saw, (xk) is bounded and therefore has weakly converging subsequences. One
has here in addition that Axkl = (xkl − ykl)/τ → 0 in norm (strongly). If z ∈ X by
monotonicity one has 0 ≤

〈
Az −Axkl , z − xkl

〉
→ 〈Az, z − x̄〉. We deduce that for all

z ∈ X, 〈Az, z − x̄〉 ≥ 0 and this shows that Ax̄ = 0 (precisely that 0 ∈ Ax̄, but as we
know already Ax̄ is a set with exactly one element). In particular ‖xkl − x̄‖ → m(x̄).

Now, Opial’s lemma shows that m(x̄) < m(x∗) for all x∗ ∈ S \ {x̄}. This means that
if x̄′ ∈ S is the limit of any other converging subsequence of (xk), we must have x̄′ = x̄.
Hence xk ⇀ x̄.

Exercise III: A nonlinear proximal point algorithm

We consider X a Hilbert space and a strictly convex lower-semicontinuous (lsc) function
ψ : X → R∪{+∞} such that the interior of domψ, denoted D, is not empty, D = domψ,
ψ ∈ C1(D) ∩ C0(D), and ∂ψ(x) = ∅ for all x 6∈ D. In other words, ∂ψ(x) is either ∅ (if
x 6∈ D), or a singleton {∇ψ(x)} (if x ∈ D). We define the “Bregman distance associated
to ψ”, denoted Dψ(x, y), as, for y ∈ D and x ∈ X,

Dψ(x, y) := ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 .

1. Show that Dψ(x, y) ≥ 0, and that Dψ(x, y) = 0 ⇒ y = x. What further estimate
can we write if in addition ψ is strongly convex? Why is Dψ not a distance in the
classical sense?
Dψ(x, y) ≥ 0 because ψ is convex. If Dψ(x, y) = 0, then for t ∈ [0, 1], ψ(tx+(1−t)y) ≤

tψ(x) + (1 − t)ψ(y) = ψ(y) + t 〈∇ψ(y), x− y〉 ≤ ψ(y + t(x − y)) Hence ψ is affine on
[x, y], which is a contradiction to ψ being strictly convex unless x = y. Finally, if ψ is
γ-convex one has for x, y:

ψ(x) ≥ ψ(y) + 〈∇ψ(y), x− y〉+
γ

2
‖x− y‖2

so that Dψ(x, y) ≥ (γ/2)‖x− y‖2.
On the other hand there is no reason to have Dψ(x, y) = Dψ(y, x) in general.
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2. Let f : X → R ∪ {+∞} be convex, lsc. Assume lim|x|→∞ f(x) = +∞. Let τ > 0.
Let x̄ ∈ D. Show that there exist a minimizer x̂ of

min
x

1

τ
Dψ(x, x̄) + f(x).

Show that then x̂ ∈ D and the “Euler-Lagrange” equation (or Fermat’s rule),

∇ψ(x̂)−∇ψ(x̄) + τ∂f(x̂) 3 0 (EL)

The function in the minimization problem is convex, lsc, and goes to infinity when
|x| → ∞. Hence it is also weakly convex and has a minimizer. (Unique as ψ is strictly
convex.) Moreover, as ψ is C1 in an open set, one has ∂(Dψ(·, x̄)/τ+f) = ∂Dψ(·, x̄)/τ+
∂f = ∇Dψ(·, x̄)/τ + ∂f . Hence one derives the equation by observing that one should
have 0 ∈ ∂(Dψ(·, x̄)/τ + f)(x̂). In particular x ∈ D otherwise the subgradient would be
empty.

3. Deduce from (EL) and the definition of a subgradient the “three point relationship”:
for any x ∈ X,

1

τ
Dψ(x, x̄) + f(x) ≥ 1

τ
Dψ(x̂, x̄) + f(x̂) +

1

τ
Dψ(x, x̂). (3P )

We have
−∇ψ(x̂) +∇ψ(x̄) ∈ τ∂f(x̂)

so that for any x,

f(x) ≥ f(x̂) +
1

τ
〈∇ψ(x̄)−∇ψ(x̂), x− x̂〉 .

Hence

f(x)+
1

τ
Dψ(x, x̄) ≥ f(x̂)+

1

τ
(〈∇ψ(x̄)−∇ψ(x̂), x− x̂〉+ ψ(x)− ψ(x̄)− 〈∇ψ(x̄), x− x̄〉)

= f(x̂) +
1

τ
(−〈∇ψ(x̂), x− x̂〉+ ψ(x)− ψ(x̄)− 〈∇ψ(x̄), x̂− x̄〉)

= f(x̂) +
1

τ
(ψ(x)− ψ(x̂)− 〈∇ψ(x̂), x− x̂〉+ ψ(x̂)− ψ(x̄)− 〈∇ψ(x̄), x̂− x̄〉)

which shows (3P ).

4. We consider the “nonlinear proximal point” algorithm: x0 ∈ D,

xk+1 = arg min
x

1

τ
Dψ(x, xk) + f(x).

Using (3P ), show that f(xk) is non-increasing. Then, show that for any x ∈ D,

f(xk)− f(x) ≤ 1

kτ
Dψ(x, x0)
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If we choose x = x̄ = xk and then x̂ = xk+1 in (3P ) we find

f(xk+1) +
1

τ

(
Dψ(xk+1, xk) +Dψ(xk, xk+1)

)
≤ f(xk)

so that f(xk) must be nonincreasing. (Moreover if f(xk) = f(xk+1) then xk+1 = xk, it
is the minimizer of f in D, as then 0 ∈ ∂f(xk)).

If we choose x̄ = xk, x arbitrary and then x̂ = xk+1 in (3P ) we find

f(xk+1)− f(x) +
1

τ

(
Dψ(xk+1, xk) +Dψ(x, xk+1)

)
≤ 1

τ
Dψ(x, xk)

Summing this for k = 0, . . . , n− 1 and using that f(xk) is decreasing gives

n(f(xn)− f(x)) +
1

τ
Dψ(x, xn) ≤ 1

τ
Dψ(x, x0).

which yields the requested inequality.

5. Assume xk → x∗ weakly: what is x∗?
One has f(x∗) ≤ lim infk f(xk) as f is convex, lsc (hence also weakly lsc). Hence

f(x∗) − f(x) ≤ 0 for any x ∈ D. Moreover as xk ∈ D, x∗ ∈ D (again we use that a
closed convex set is weakly closed). Hence x∗ is a minimizer of f in D.

6. We assume in addition that there exists γ > 0 such that h = f−γψ is convex. Show
(using h) that (3P ) can be improved into:

1

τ
Dψ(x, x̄) + f(x) ≥ 1

τ
Dψ(x̂, x̄) + f(x̂) +

1 + γτ

τ
Dψ(x, x̂). (3Pγ)

Hint: write that f(x) = h(x) + γψ(x) = (h(x) + γ[ψ(x̄) + 〈∇ψ(x̄), x− x̄〉]) + γDψ(x, x̄)
and use (3P ) after having added (1/τ)Dψ(x, x̄); or write (EL) using that ∂f(x̂) =
∂h(x̂) + γ∇ψ(x̂) and work as in the proof of (3P ) in 3..

Let us use that f(x) = h(x) + γψ(x) = (h(x) + γ[ψ(x̄) + 〈∇ψ(x̄), x− x̄〉]) and denote
h′(x) := h(x) + γ[ψ(x̄) + 〈∇ψ(x̄), x− x̄〉]. Then from (3P ) we have

1

τ
Dψ(x, x̄)+f(x) =

1 + τγ

τ
Dψ(x, x̄)+h′(x) ≥ 1 + τγ

τ
Dψ(x̂, x̄)+h′(x̂)+

1 + τγ

τ
Dψ(x, x̂)

=
1

τ
Dψ(x̂, x̄) + f(x̂) +

1 + τγ

τ
Dψ(x, x̂)

7. Deduce the “linear” rate of convergence for the algorithm:

f(xk+1)− f(x∗) ≤ 1

(1 + γτ)k
Dψ(x∗, x0)

where x∗ is a minimizer of f in D.
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Now we have

f(xk+1)− f(x) +
1

τ
Dψ(xk+1, xk) +

1 + τγ

τ
Dψ(x, xk+1) ≤ 1

τ
Dψ(x, xk).

Choosing x = x∗ a minimizer of f over D, we have that f(xk+1)− f(x∗) ≥ 0 so that

1 + τγ

τ
Dψ(x∗, xk+1) ≤ 1

τ
Dψ(x∗, xk).

It follows that Dψ(x∗, xk) ≤ 1/(1 + τγ)kDψ(x∗, x0) and therefore also f(xk+1) − f(x∗)
(using the inequality once more).

Exercise IV: convex homogeneous functions

Let f : Rd → R ∪ {+∞} (d ≥ 1) be convex, lsc, and positively 2-homogeneous: for any
x ∈ Rd, t > 0, f(tx) = t2f(x). We want to show that

√
f is also convex (1-homogeneous).

1. Show that f∗ (the convex conjugate) is positively 2-homogeneous. (Hint: evaluate
f∗(ty)/t2 for t > 0.)

1

t2
f∗(ty) = sup

x

1

t
y · x− 1

t2
f(x) = sup

x
y · x

t
− f(

x

t
) = f∗(y).

2. Let h(x) = supf∗(y)≤1 y · x be the conjugate of the characteristic function δ{f∗(·)≤1}.
Show that h is convex, one-homogeneous, non-negative.
h is trivially convex lsc as a sup of affine functions (or as the conjugate of δ{f∗(·)≤1}).

Also, for t > 0, h(tx) = sup... y · tx = t sup... y · x = th(x) is trivial. As f∗(0) ≤ 0 (f∗ is
lsc, f∗(0) ≤ lim inft→0 f

∗(tx) = 0 for any x ∈ dom f∗), 0 ∈ {f∗(·) ≤ 1} and h ≥ 0.

3. Show that f = h2/4, conclude.

f(x) = sup
y
x · y − f∗(y) = sup

f∗(η)=1,t>0,y=tη
tx · η − t2 = sup

t>0
th(x)− t2 =

h(x)2

4
.

Hence
√
f = h/2 is a convex function.
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