Continuous Optimization
Introduction a ’optimisation continue
Controle
(14 janvier 2020)

Exercise I: conjugate function and “prox” operator

We consider the function f: R? — R U {+o0}, d > 1, defined by

f(e) = {—1n<1 “llal) it ol <1

+o00 else.

1. Show that f is convex, lower-semicontinuous (lsc).

First, f is continuous in {||z| < 1}, and goes to +oo when ||z| — 1, so it is lower-
semicontinuous. Then, given x,y and t €]0, 1] and assuming ||z, |ly| < 1 (otherwise
tf(z)+ (1 —1t)f(y) = oo and there is nothing to prove), one has:

— [tz + (1 =)yl = —tflzll = 1 = )]y so that
[tz + (1 =t)y) = —In(=[ltz + (1 = t)y[)) < —In(=t[lz]| = (1 =)yl

where we use that || - || is convex and — In is decreasing. Then, as —In is convex,

—In(=tflz]| = (1 =Dyl) < —thnflz] = @ =) yl| = tf(z) + (1 =) f(y).

2. Show that f(z) > ||z||. Deduce that 9f(0) 2 B(0,1) = {y: |ly|| < 1}.
One has —In(1 +s) > —In1l — s = —s by convexity of —In. Hence f(z)
particular f(z) > y-x for any y with ||y|| < 1, as f(0) = 0 this shows that 9f(0)

> Jle. Tn
> B(0,1).

3. Show that for z # 0, ||z|| < 1,

2l ==l

Deduce that for any p with ||p|| > 1, one can compute z € B(0,1) with Vf(z) = p.
Deduce an expression for f*(p) (recall Legendre-Fenchel’s identity). What is f*(p) for
Ipll <17

The formula is a simple differentiation, as f is C*° in B(0,1)\{0}. Then, for ||p|| > 1, if
p = V f(z) one sees that  and p must be aligned and taking the norms, ||p|| = 1/(1—||z||)
so that [lz]| =1 —1/[jpl| € (0,1) and = = (1 - 1/l[p|)p/lpl-

Using that f(x) + f*(p) = (p,x) for p = V f(z), we deduce that

) =z-p—f(x) = pl =1+ - (1 =1/]p[)) = lpl = njpl 1.

For ||p|| < 1, on the other hand, we have p € 9f(0) so that f*(p) =0-p— f(0) =0.

Vi)



4. We want to compute x = prox,¢(7) for a given 7 € RY and 7 > 0. Write the
equation satisfied by x and show that (i)  and Z are colinear; (ii) z = 0 if ||z| < 7;
(iii) if ||z|| > 7, then p = ||z| satisfies a second order equation which has two positive
solutions. Using then that p < 1 and p < ||z, give the right answer.

The problem to solve is

-l — z]?
min ———
T 2T

+ f(z)

and is solved by a unique point which satisfies
r—T+710f(x)>0.

It means, either ||Z|| < 7 and = = 0 is a solution, or, for ||Z]| > 7, z # 0, [|z] < 1 (as
f(z) is finite) and

TX
T+
||l

(1= [l)

In particular we see that = pz/||z|| for some p > 0, and taking the norm we have

=z & (2|1 = [lz])) + )z = [J«]|(1 - [J=])z.

[l (C = {lll) +7 = (1 = [lzD ]zl
Denoting p := ||Z|| > 7, p € (0,1) must solve
pP=(1+p)p+p—7=0

which has two solutions

L 14+p+/(1-p)2+4r 1+ p—+/(1—=p)2+4r
p = 5 yop = 5

with p™ +p~ =1+ pand ptp~ =p—7 > 0. Observe that p™ > (1 +p+ |1 —p|)/2 so
that in case p > 1, p™ > p>1 (hence p~ =1+ p—p" < 1), and in case p < 1, p™ > 1
(hence p~ < p < 1). Hence the right solution (giving the norm of x) is p~, and one can
write

I A O L D

Exercise |l: The “Extragradient” method

Let X be a Hilbert space and A a maximal-monotone operator. We assume that A is
defined everywhere in X and L-Lipschitz! (in particular, it implies that Az is just one
point, denoted Az, for any x).

One wants to find z* € X with Az* =0. Let S = {z € X : Az = 0} and assume that
S # 0.

! A Lipschitz maximal monotone must be defined everywhere, thanks to Kirszbraun-Valentine’s theorem.




1. We first consider the elementary algorithm z*+1 = 2% —7Az*, for 7 > 0, and 2° € X
given. Recall from the lecture notes the standard conditions on A and 7 which guarantee
that the sequence (z¥);>0 (weakly) converges to a point z* € S.

This is in the lecture notes. One needs A to be co-coercive: (Ar — Ay,xz —y) >
pl|Ax — Ay|?, and that 0 < 7 < 2.

2. In general it is not clear that the algorithm in 1. will converge. Consider for instance

X =R?,
0 1
A(_l O).

Show that A satisfies the assumptions at the beginning of the exercise. Evaluate ||«
in function of z*. Deduce that the algorithm always diverges if 2% # 0.

A is Lipschitz (obvious), monotone since (Ax — Ay, z —y) = (A(x —y),x —y) = 0 for
any x,y, maximal: if (z,p) are such that (Az —p,x — z) > 0 for all z, for z = z + ty,
y € X, t >0, one finds that 0 < (Az + tAy — p,ty) =t (Az — p,y) so that (Az — p,y) >
0 for all y (we have used (tAy,ty) = 0). It implies that p = Az.

Then, given (z,y) € R?, we compute

o= (1 -

Thus, ||z*¥|| = V1 + 72 HxOH which shows the claim.

k+1H

r—TY

2
Y+ T ’ = (z — 1Y)’ + (y+12)* = (1 4+ 72) (2 + 7).

The extragradient algorithm (Korpelevich, 1976). One Considers the following two-
steps algorithm, known as the “extra-gradient” method (as it computes an evaluation
of A at an extrapolated point). Given z° € X, 7 > 0, one lets for k > 0:

{yk =gk — 7 A"

k+1

oF = gk — 7 AyP.

One wants to show that with this correction, the algorithm converges for 7 well chosen.

3. We consider the setting of question 2.. Compute the matrix B := I — 7A(I — TA).
Evaluate again ||2**1||, and show that if 7 < 1 the algorithm converges.
We have

0 7 1 —7 ™ T 1—7? -7
B[—TA(I—TA)I—(_T 0> <7_ 1>I—<_T 72>( - 1_72)

One has z*+! = 2 —7AyF = o — 7 A(2F — 7 A2F) = (I TA(I—TA)):IIk = Bz*. Given
(z,y) € R%, | B(a,y)T|I” = (1-7*)z—7y)*+(ra+(1-7%)y)* = (1-72)>+7)||(2,9)"||*.
Using that (1 —72)2+72)=1—-72+7*=1—7%(1 — 72) we find that if 0 < 7 < 1,

k

HJ,kH =1-72(1-172) \\¢0|] —0

as k — oo (with a linear rate) so that the algorithm converges.



4. We now return to the general case where A is a maximal monotone operator, L-
Lipschitz, in a Hilbert space X. Show that if 0 < 7L < 1 and if z is a fixed point of the
algorithm (meaning that if z¥ = x, then #¥*! = x as well), then z € S.

We have, letting y = 2 — 7 Az, that + — 7TAy = x, that is Ay = 0 (y € S). Then,
|Az|| = ||Az — Ay|| < L|lx — y|| so that ||[TAz| < 7L|z — y|| = 7L||7Az|. Since
0 < 7L < 1 this is possible only if Az = 0, that is x € S.

5. Let 2 € S. Using that A is monotone, first show (using the second line of the
algorithm) that

ot = 2t 2 < fla* — o) = 27 (Agh, 2t — ) + 72 Ay
_ ”xk P2 <xk S R yk> i 7_2”1,19 _ $k+1”2‘
One has
oF = a2 = [la* — o2 — 2 (Ayh, 2F — 2 ) + 72 Ay

We write (recall that Az* = 0)

= <Ayk’$k _ yk> i <Ayk - Ax*’yk - x*> > <Ayk’xk —yk>.

Hence,
ok = a2 < Jla* — o7 — 2 (g, aF — ) + 72 Ayt

We conclude using again that 7Ay* = zF — 2F+1,

6. Deduce, using now that A is L-Lipschitz, that
"t — 2 < fl2® — 2| = (1= 72L2)|ly" — 2"
One has
kaJrl o l‘*”Q < ”.Tk o .73*||2 —9 <{L’k o xk+17xk o yk> + ||Jfk+1 o .Cl?k||2
= |lz* — 2*|* + " = yF )2 — b - o)

= ok — o2 + 72 Ay — Aak|2 — 2k — |2

< la® = 2 + L2y — 2P — [l2* - o)



7. We now assume 0 < 7 < 1/L. What can we say of the sequence (z¥)>q? Of the
sequence (||z% — 2*||)x>o for * € S? Of the sequence (2% — y*)x>0?

The first is bounded (and hence has weakly converging subsequences), the second is
decreasing (and hence has a limit), the last must go to zero, as the series

n
(1= 7L Ik — 2P + 2™~ < [ — a7
k=0
is bounded.

8. As in the lecture notes, we denote m(z*) = limj_, ||2* — 2*|, for 2* € S. Let Z be
the (weak) limit of a subsequence (z*);. Show that Az* — 0 (strongly). Using that A
is maximal-monotone, deduce that AZ = 0, that is Z € S. Deduce from Opial’s lemma
that ¥ converges (weakly in X) to Z.

As we saw, (z¥) is bounded and therefore has weakly converging subsequences. One
has here in addition that Az* = (¥ — y*)/7 — 0 in norm (strongly). If z € X by
monotonicity one has 0 < (Az — Azkt, 2 — 2k1) — (Az,z — ). We deduce that for all
z € X, (Az,z— ) > 0 and this shows that AZ = 0 (precisely that 0 € AZ, but as we
know already AZ is a set with exactly one element). In particular ||z* — Z|| — m(Z).

Now, Opial’s lemma shows that m(z) < m(x*) for all z* € S\ {z}. This means that
if z € S is the limit of any other converging subsequence of (2*), we must have z’ = z.
Hence zF — z.

Exercise Ill: A nonlinear proximal point algorithm

We consider X a Hilbert space and a strictly convex lower-semicontinuous (Isc) function
¥ : X — RU{+oc} such that the interior of dom ¢, denoted D, is not empty, D = dom 1,
€ CYD)NCYD), and Op(x) = () for all z & D. In other words, dv(z) is either § (if
x & D), or asingleton {Vi(x)} (if z € D). We define the “Bregman distance associated
to ¢”, denoted Dy (z,y), as, for y € D and = € X,

Dy(z,y) := (x) —p(y) — (Vi (y),z —y) .

1. Show that Dy(z,y) > 0, and that Dy(x,y) = 0 = y = x. What further estimate
can we write if in addition v is strongly convex? Why is Dy not a distance in the
classical sense?

Dy (x,y) > 0 because 9 is convex. If Dy (z,y) = 0, then for t € [0, 1], Y (tz+(1—t)y) <
t(z) + (1 = )v(y) = ¥(y) + t(VY(y),z —y) < ¢(y + t(z — y)) Hence ¢ is affine on
[, y], which is a contradiction to 1 being strictly convex unless x = y. Finally, if ¢ is
~v-convex one has for x,y:

(@) 2 () + (V)@ — ) + 3o — Il

so that Dy (z,y) > (v/2)|lz — y||*.
On the other hand there is no reason to have Dy (x,y) = Dy(y, x) in general.



2. Let f: X — RU{+oo} be convex, Isc. Assume lim,_,, f(z) = +00. Let 7 > 0.
Let £ € D. Show that there exist a minimizer & of

1 _
min ;Dw(a:,x) + f(z).
Show that then & € D and the “Euler-Lagrange” equation (or Fermat’s rule),
V() — V() + 70f(2) 2 0 (EL)

The function in the minimization problem is convex, lsc, and goes to infinity when
|x| — oo. Hence it is also weakly convex and has a minimizer. (Unique as 1) is strictly
convex.) Moreover, as ¢ is C'! in an open set, one has 9(Dy(-,Z)/7+ f) = 0Dy (-, T) /7 +
Of = VDy(-,z)/7 + 0f. Hence one derives the equation by observing that one should
have 0 € O(Dy(-,z)/7 + f)(&). In particular € D otherwise the subgradient would be
empty.

3. Deduce from (EL) and the definition of a subgradient the “three point relationship”:
for any = € X,

IDy(a, )+ f(@) > LDyl B) + f() + Dyl ). (3P)

We have
—V(2) + V(z) € 7Of ()
so that for any =z,

Fla) > (@) + (V@) V(@) ).

Hence
f(l’HEDw(%” ) = f(i‘)+% (VY(z) — Vi(2), 2 — 2) +¢(z) — (@) — (VY(2), 2 — 7))
= f(&) + ! (= (VY(2),z — 2) + ¥(z) — ¥(T) — (VY (2), & — 7))
= f(&) + % (V(z) = ¥(&) = (V(2), 2 — 2) + (2) — ¥(Z) — (VY(T), 2 — 7))

which shows (3P).

4. We consider the “nonlinear proximal point” algorithm: z° € D,

k+1

1
2" = arg min = Dy, (2, %) + f(x).
z T

Using (3P), show that f(z*) is non-increasing. Then, show that for any = € D,

f(2*) — f(2) < - Dy(z,2°)

kr



If we choose x = Z = 2" and then & = z**! in (3P) we find

F) 4+ Dy, 2 4 Dy(ab a4 < fab)

so that f(z¥) must be nonincreasing. (Moreover if f(2*) = f(z**1) then 2! = 2%, it
is the minimizer of f in D, as then 0 € 9f(z")).

If we choose 7 = 2", x arbitrary and then & = z¥*! in (3P) we find

1 1
fh — flz) + = (Dw(wkﬂ,xk) + Dw(x,:rkﬂ)) < =Dy(z,2")
T T
Summing this for £ = 0,...,n — 1 and using that f(«*) is decreasing gives

n 1 n 1
n(f") = f@)) + Dyl ") < ~Dy(a, 2°)
which yields the requested inequality.

5. Assume z* — 2* weakly: what is z*?

One has f(z*) < liminfy f(2*) as f is convex, lsc (hence also weakly Isc). Hence
f(z*) — f(z) <0 for any 2 € D. Moreover as z¥ € D, 2* € D (again we use that a
closed convex set is weakly closed). Hence z* is a minimizer of f in D.

6. We assume in addition that there exists v > 0 such that h = f —~1) is convex. Show
(using h) that (3P) can be improved into:

14+~7

LDyl )+ () 2 2Dy(0,7) + £(2) + 2 Dy, ). (3P))
Hint: write that f(z) = h(z) + () = (h(z) +¥[¥(Z) + (VY(Z), 2 — T)]) + 7Dy (z, Z)
and use (3P) after having added (1/7)Dy(x,Z); or write (EL) using that 0f(z) =
Oh(z) +yV(z) and work as in the proof of (3P) in 3..

Let us use that f(x) = h(x) +v¢(z) = (h(z) +v[¢(Z) + (V¢(Z),x — 7)]) and denote
h'(z) := h(z) + v[¢(Z) + (V(Z),x — T)]. Then from (3P) we have

L Dy(e, )+ () = T Dy (a3 4R ) >

7. Deduce the “linear” rate of convergence for the algorithm:

1

fE) = f@*) < R

Dy(a*, ")

where x* is a minimizer of f in D.



Now we have

1+ 77y

1 ! 1
.f<$k+l) - f(.’E) + ;Dw<wk+17mk) + Dw(wvxk+1) < ;Du(mvxk)
Choosing = = * a minimizer of f over D, we have that f(z**1) — f(2*) > 0 so that

1 1 ,
a TVDU,(:L‘*, M) < ZDy(a*, 2b).
T T

It follows that Dy(z*, %) < 1/(1 + 77)*Dy(2*,2°) and therefore also f(x*1) — f(z*)
(using the inequality once more).

Exercise IV: convex homogeneous functions

Let f:R? = RU {400} (d > 1) be convex, lsc, and positively 2-homogeneous: for any
r€RL t >0, f(tr) = t2f(x). We want to show that /f is also convex (1-homogeneous).

1. Show that f* (the convex conjugate) is positively 2-homogeneous. (Hint: evaluate
f*(ty)/t? for t > 0.)

) = swp gy o — S f) =swy - T - 1) = 1),

2. Let h(z) = sup f«(y)<1 Y - © be the conjugate of the characteristic function dgp+(.y<1}.
Show that A is convex, one-homogeneous, non-negative.

h is trivially convex lIsc as a sup of affine functions (or as the conjugate of d;f«(y<1y)-
Also, for t > 0, h(tz) =sup_y -tz =tsup y-x = th(z) is trivial. As f*(0) <0 (f* is
Isc, f*(0) < liminf,o f*(tx) =0 for any x € dom f*), 0 € {f*(-) <1} and h > 0.

3. Show that f = h%/4, conclude.

* 2 2 }L(ZL')Q
fl@)=swpz-y—f(y)=  sup  tz-n—t=supth(zx) -’ = =
Y fr(m)=1t>0,y=tn >0 4

Hence \/f = h/2 is a convex function.



