Rechercher

sur ce site


Accueil du site > Résumés des séminaires > Labo > Estimation du taux de division dans des modèles de croissance-fragmentation

Estimation du taux de division dans des modèles de croissance-fragmentation

Cette présentation est centrée sur les modèles de croissance-fragmentation, pouvant servir à modéliser la croissance d’une population de cellules. D’un point de vue stochastique, nous nous intéressons à un système de particules évoluant à travers deux phénomènes. D’une part, les particules évoluent de façon déterministe (elles vieillissent, elles croissent). D’autre part, les particules se divisent au bout d’un temps aléatoire : une particule d’âge a ou de taille x se divise en deux nouvelles particules (d’âge 0, de taille initiale x/2) selon un taux de division B(.) dépendant de l’âge a ou de la taille x de la particule. Un objectif majeur est alors de reconstruire de façon non-paramétrique le taux de division. Dans une première partie, une étude générale sur les chaînes de Markov bifurquantes, autrement dit adaptées à la structure d’arbre binaire, est menée. Cette étude nous permet de reconstruire de façon adaptative un taux de division dépendant de la taille à partir de l’observation des tailles à la naissance de toutes des cellules jusqu’à une génération fixée dans l’arbre généalogique de la population. Dans une seconde partie, je présenterai l’estimation du taux de division dépendant de l’âge, à partir de l’observation du système en temps continu entre les instants 0 et T. Des difficultés sont intrinsèquement liées au cadre du temps continu, dont un phénomène de biais de sélection.

CMAP UMR 7641 École Polytechnique CNRS, Route de Saclay, 91128 Palaiseau Cedex France, Tél: +33 1 69 33 46 23 Fax: +33 1 69 33 46 46