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Abstract
We observe that there is a strong connection between a whole class of

simple binary MRF models and the Rudin-Osher-Fatemi Total Variation min-
imization approach to image denoising. This leads to new algorithms. We
then compare the e�ciency of various algorithms.

1 Introduction

In this paper, we would like to study the relationship between the Rudin-Osher-
Fatemi Total Variation (TV) minimization model for image denoising, and a class
of simple binary MRF models. In particular, we will show that some algorithms
designed to solve one type of problem can be adapted to the other. Our goal is to
discuss the links between problems such as

min
θi,j∈{0,1}

λ
∑
i,j

|θi+1,j−θi,j |+ |θi,j+1−θi,j | +
1
2

∑
i,j

θi,j |gi,j−a|2 + (1−θi,j)|gi,j−b|2 ,

(1)
and

min
wi,j∈R

λ
∑
i,j

|wi+1,j − wi,j |+ |wi,j+1 − wi,j | +
1
2

∑
i,j

|gi,j − wi,j |2 . (2)

Here, i, j index the rows and columns of a digital image and run, for instance, from
1 to N and 1 to M , N,M ≥ 1. Problems such as (1) arise in simpli�ed MRF image
denoising models where one assumes, for instance, that an observation g results
from an original binary signal taking only values a and b, to which a Gaussian
noise is added. (Here, g, a, b could be vector valued.) But, in fact, very similar
problems can be used e�ciently in a much more elaborate way: for instance, in [27]
the authors build a tree of binary MRFs to classify images in much more than two
labels (see also [23, 24]).

It is known that (1) can be solved exactly using linear programming, and more
exactly by �nding a minimal cut in a graph, using a max-�ow algorithm. This has
been �rst observed by Greig, Porteous and Seheult [17], and these techniques have
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been then extended to much more general problems in the recent years [18, 7, 20,
21, 22, 25].

On the other hand, problem (2) has been �rst proposed in image processing
by Rudin, Osher and Fatemi [26], as an e�cient approach to edge-preserving im-
age denoising or reconstruction. We have proposed recently [11] an algorithm
for solving the �isotropic� version of this problem (where, in the sum, each term
|wi+1,j −wi,j |+ |wi,j+1−wi,j | is replaced with the standard Euclidean norm of the
discrete gradient

(
(wi+1,j − wi,j)2 + (wi,j+1 − wi,j)2

)
1/2), however, our algorithm

is quite general and easily adapted to (2) (see Section 4 below). Our point is that
problems (1) and (2) are easily derived one from the other, so that algorithms de-
signed to solve one can be used to solve the other. We would like to discuss the
consequences of these links and compare the algorithms.

This note is organized as follows. In the next section we describe an abstract
framework in which both (1) and (2) enter as a particular case. We show that the
solutions of these problems are closely related, in particular, we can deduce a generic
uniqueness for solutions of (1). In Section 3 we discuss various implementations of
graph cuts algorithms that can be derived to solve (2). We then recall, in Sec-
tion 4, the algorithm proposed in [11]. Numerical experiments are then performed
to compare these various algorithms.

While we were completing a �rst version of this note, J. F. Aujol mentioned to
us the recent work of Jérôme Darbon and Marc Sigelle [14, 15], which may be seen
as the probabilistic counterpart of the present work. They show essentially the same
results (including, in particular, Prop. 2.2), with very di�erent proofs. Although
we may claim our proofs are probably simpler, their results are equivalent and the
algorithm they derive is essentially the same as the dyadic algorithm we present in
section 3.3.
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2 The abstract framework

2.1 A class of regularizing energies

We consider a vector space X ∼ RN with the Euclidean scalar product (u, v) =∑N
i=1 uivi. In practice, an element in X will represent a 2D scalar or multichannel

image, but other situations could be encountered. Let us also mention that all
we will write is still valid in the in�nite dimensional case, if X = L2(Ω) for Ω a
bounded, open set in Rd, d ≥ 1 (with some adaption in the proofs and notation).
The �rst part of the energies that appear in problems (1) and (2) is a particular
case (as we will check in Section 3) of a function J : X → [0,+∞] which is convex
(i.e., J(tu + (1 − t)v) ≤ tJ(u) + (1 − t)J(v) for any t ∈ [0, 1], u, v ∈ X), lower
semicontinuous, positively one-homogeneous (i.e., J(tu) = tJ(u) for any t ≥ 0 and
u ∈ X), and that satis�es the generalized co-area formula:

J(u) =
∫ +∞

−∞
J(ut) dt (3)

where for any i = 1, . . . , N ,

ut
i =

{
1 if ui > t ,
0 otherwise,

that is, ut = χ{u>t}, the characteristic function (in {0,1,. . . ,N}) of the superlevel s
of u = (ui)N

i=1. Let us mention that all what will be said here is still valid if �>� is
replaced with �≥� and, whenever J(−u) = J(u) and up to a change of sign in some
formulas, with �<� or �≤�. Observe also that the one-homogeneity of J follows in
fact from (3). Moreover, J(u) = 0 if ui = uj for all i, j (otherwise the integral in (3)
is always in�nite).

2.2 Abstract binary MRFs

We will check later on that problem (1) can be restated in the following abstract
form

min
θ∈X,θi∈{0,1}

λJ(θ) +
∑

i:θi=1

s−Gi (Ps)

where G ∈ X would be a vector depending on g, a, b and s ∈ R a level depending
on a, b.

A �rst observation, which is quite obvious, is the following:

Proposition 2.1 Any solution θ of (Ps) is also a solution of

min
v∈X,vi∈[0,1]

λJ(v) +
N∑

i=1

(s−Gi)vi . (P ′
s)

Conversely, if v is a solution of (P ′
s), then for any t ∈ (0, 1) vt is a solution of (Ps)

Proof.Without loss of generality we assume s = 0 and denote by (P ), (P ′) the
problems (P0) and respectively (P ′

0). It is enough to observe that if vi ∈ [0, 1] for
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any i, we have vi =
∫ vi

0
dt =

∫ 1

0
vt

i dt. We deduce

λJ(v) −
N∑

i=1

Givi =
∫ 1

0

λJ(vt) −
∑

i:vt
i=1

Gi

 dt .

We easily deduce that the minimal value m of both problems (P ) and (P ′) is the
same, and, clearly, that a solution θ of (P ) is also a solution of (P ′). Let v solve
(P ′). One has ∫ 1

0

λJ(vt) −
∑

i:vt
i=1

Gi

 − m dt = 0

hence for a.e. t ∈ [0, 1], λJ(vt) −
∑

i:vt
i=1 Gi = m. By the lower semicontinuity of

J , for any t < 1 this remains true.

This property shows that the minimization of the binary problem (Ps) is in fact
a convex minimization problem.

2.3 Comparison for binary MRFs

Let us now observe the following comparison property, which does not seem to be
well-known. It is already mentioned in J. Darbon and M. Sigelle's recent papers,
where it is proved using a probabilistic approach. Our proof, which we claim is quite
simpler, is the �nite-dimensional counterpart of the proof we proposed in [2, 3, 8].

Proposition 2.2 Assume G2 > G1, i.e., for any i = 1, . . . , N , G2
i > G1

i . For
α = 1, 2, let vα be solutions of (P ′) with G replaced with Gα. Then v2 ≥ v1.

Proof.The proof relies on the following Lemma (mentioned to us �rst by Bouch-
itté [5])

Lemma 2.3 Let v, w ∈ X. Then J(v ∧ w) + J(v ∨ w) ≤ J(v) + J(w).

Here (v ∧ w)i = min{vi, wi} and (v ∨ w)i = max{vi, wi}, for any i = 1, . . . , N .
Proof.By (3), we see that it is enough to prove the inequality when v, w are char-
acteristic functions, that is, when vi, wi ∈ {0, 1} for any i = 1, . . . , N . In this case,
one has for any i

vi + wi = vi ∨ wi + vi ∧ wi =

 0 if wi = vi = 0 ,
1 if wi = 1, vi = 0 or wi = 0, vi = 1 ,
2 if wi = vi = 1 .

Hence, we see that {v + w > 0} = {v ∨ w = 1} while {v + w = 2} = {v ∧ w = 1},
so that by (3),

J(v + w) =
∫ 2

0

J((v + w)s) ds

=
∫ 1

0

J(v ∨ w) ds +
∫ 2

1

J(v ∧ w) ds = J(v ∨ w) + J(v ∧ w) .

Since J(v + w) = 2J((v + w)/2) ≤ 2(J(v)/2 + J(w)/2) = J(v) + J(w), Lemma 2.3
is true.
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Let us mention that, in fact, the property in Lemma 2.3 is equivalent to the
generalized coarea formula (3) (assuming J is a convex, l.s.c., one-homogeneous
function with J(c + ·) = J(·) for any constant c ∈ R). Functions that satisfy the
thesis of Lemma 2.3 appear in optimization theory as �sub-modular� functions, and
it is observed in [21] that they are the only two-point interactions functions of binary
variables that can be minimized using graph-cut algorithms.

We now return to the proof of Proposition 2.2. We follow the proof of a similar
result in [2, 3, 8]. We observe that

λJ(v1)−
N∑

i=1

G1
i v

1
i ≤ λJ(v1 ∧ v2)−

N∑
i=1

G1
i (v

1
i ∧ v2

i ) ,

λJ(v2)−
N∑

i=1

G2
i v

2
i ≤ λJ(v1 ∨ v2)−

N∑
i=1

G2
i (v

1
i ∨ v2

i ) .

Summing both inequalities and using Lemma 2.3, we �nd that

N∑
i=1

G2
i (v

1
i ∨ v2

i − v2
i ) ≤

N∑
i=1

G1
i (v

1
i − v1

i ∧ v2
i ) .

Now, for any i, v1
i ∨ v2

i − v1
i = v1

i − v1
i ∨ v2

i = (v1
i − v2

i )+ = v1
i − v2

i if v1
i > v2

i and 0
otherwise. Hence

N∑
i=1

(G2
i −G1

i )(v
1
i − v2

i )+ ≤ 0 .

We �nd that if G2 ≥ G1, then for any i such that G2
i > G1

i , one must have v1
i ≤ v2

i .
In particular, this yields Proposition 2.2.

Remark 2.4 If vα
i ∈ {0, 1} for α = 1, 2 and any i, that is, if vα solves (P ) (with

G replaced with Gα), we �nd that when G2 > G1, then {v1 = 1} ⊆ {v2 = 1}. In
fact, in general, one has {v1 > 0} ⊆ {v2 = 1}.

Remark 2.5 If G1 = G2 = G and v1, v2 are two di�erent solutions, the same
proof will show that necessarily, J(v1) + J(v2) = J(v1 ∧ v2) + J(v1 ∨ v2) and both
v1 ∧ v2, v1 ∨ v2 are also solutions of (P ′).

Remark 2.6 If G2 ≥ G1, by approximating G2 by G2 +ε, ε > 0 and letting ε→ 0,
one shows that there exist a solution v2 of (P ′) with G replaced with G2 such that
v2 ≥ v1 (for any choice of v1) � or, conversely, there exists a v1 with v2 ≥ v1 for
any choice of v2.

2.4 The abstract ROF model

Let us now introduce the following minimization problem, which is the abstract
version of (2):

min
w∈X

J(w) +
1
2λ
‖G− w‖2 . (4)

Our main result is the following.
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Proposition 2.7 Let w solve (4). Then, for any s ∈ R, both

ws
i =

{
1 if wi > s ,
0 otherwise and w

s
i =

{
1 if wi ≥ s ,
0 otherwise

solve (Ps). Conversely, if θ solves (Ps) (resp, v solves (P ′
s)), then ws ≤ θ ≤ w

s
i

(resp, ws ≤ v ≤ w
s). In particular, if ws = w

s (which is true for all but a �nite
number of levels s), then the solution of (Ps) and (P ′

s) is unique.

This means that solutions to the whole family of problems (Ps), s ∈ R, could be
computed by solving just one convex problem (4), and conversely, that (4) can be
minimized by solving an appropriate family of binary problems (Ps). We will explain
later on how this is done. In the case J(w) is the total variation of w ∈ X = L2(Ω),
Ω open subset of Rd, then J(θ) is the perimeter of the set {θ = 1} and this kind of
equivalence has been observed many years ago in minimal surfaces problems (see for
instance [16]). It has been extended recently to problems such as (1), in [10, 8]. In
image processing, the observation that (1) can be solved by �nding the appropriate
superlevel of the solution of (4) was also mentioned recently in [12, 13].
Proof.The fact that the solutions of (Ps), for s ∈ R, can be seen as the level sets
of a w ∈ X, follows from Proposition 2.2. Indeed, if s > s′, one readily sees that
any pair of solutions θ, θ′ of (Ps) and (Ps′) will satisfy θ′ ≥ θ. One can let for each
i = 1, . . . , N

wi = sup{s ∈ R : ∃θ solving (Ps) with θi = 1} .

If s−Gi ≤ 0 for all i, then θ ≡ 1 solves (Ps), and if s−Gi ≥ 0 for all i, then θ ≡ 0 is
the solution: one deduces that minj Gj ≤ wi ≤ maxj Gj for all i. By the comparison
principle, we see that for any s < wi, θi = 1 for any solution of (Ps), while if s > wi,
it must be that θi = 0 for any solution. Hence if s 6∈ {wi : i = 1, . . . , N}, ws is
a solution of (Ps). Moreover, it is the unique solution, because of the comparison
principle and because if s′ is close enough to s, ws = ws′ . On the other hand, if
s ∈ {wi : i = 1, . . . , N}, one has ws = limn→∞ ws+1/n while w

s = limn→∞ ws−1/n,
showing that both are (di�erent) solutions of (Ps). Let us now show that w is the
solution of (4). Consider v ∈ X, and let s∗ ≤ mini vi. One has∫ +∞

s∗

(s−Gi)vs
i ds =

∫ vi

s∗

s−Gi ds =
1
2
(
(vi −Gi)2 − (s∗ −Gi)2

)
,

hence (since J(vs) = 0 for any s < s∗)

1
λ

∫ +∞

s∗

λJ(vs) +
∑

i:vs
i =1

s−Gi

 ds

= J(v) +
1
2λ
‖G− v‖2 − 1

2λ

N∑
i=1

(s∗ −Gi)2 .

If, also, s∗ ≤ mini wi, we �nd (by the minimality of ws in (Ps) for all s)

J(v) +
1
2λ
‖G− v‖2 ≥ J(w) +

1
2λ
‖G− w‖2 ,

so that w is the (unique) solution of the (strictly convex) problem (4).
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Remark 2.8 We have used, here and earlier, an obvious stability property of
problems (Ps), (P ′

s), and (4), which results from the lower semicontinuity of J : if
Gn, or sn, go to G, or respectively s, as n → ∞, and if vn denote solutions of
the corresponding approximate problems, then any cluster point v of the sequence
(vn)n≥1 is a solution of the limit problem.

Remark 2.9 It is important to observe that a consequence of Proposition 2.7 is
the generic uniqueness (in some sense) of the solution of the binary problem (Ps).

2.5 Quantized ROF model

We now consider the following quantized variant of (4):

min
{

J(z) +
1
2λ
‖G− z‖2 : z ∈ X , zi ∈ {l0 . . . , ln} ∀i = 1, . . . , N

}
(5)

where (lk)n
k=1 are given real values. That is, we minimize (4) only among functions

that take values in a prescribed, �nite set. Without loss of generality, we assume
that l0 < l1 < · · · < ln, and for simplicity that for all k = 1, . . . , n, lk − lk−1 = δl
(adaption to other cases is straightforward). For a z admissible, we can write

z = l0 +
n∑

k=1

(lk − lk−1)θk = l0 + δl

n∑
k=1

θk

where for each k ≥ 1, θk is the binary vector de�ned by θk
i = 1 i� zi ≥ lk. Then,

the fact θk ≤ θk−1 for any k ≥ 2, and the co-area formula (3), yield J(z) =∑n
k=1 δl J(θk). On the other hand,

‖G− z‖2 =
N∑

i=1

(Gi − zi)2

=
N∑

i=1

(
(Gi − l0)2 +

n∑
k=1

(
(Gi − lk)2 − (Gi − lk−1)2

)
θk

)

=
N∑

i=1

(Gi − l0)2 + 2δl
n∑

k=1

N∑
i=1

(
lk + lk−1

2
−Gi

)
θk

i ,

hence, up to a constant, problem (5) is the same as

min
θk

n∑
k=1

(
λ J(θk) +

N∑
i=1

(
lk + lk−1

2
−Gi

)
θk

i

)
,

where the min is on the (θk)n
k=1, with the constraint that θk ≤ θk−1 for any k =

2, . . . , n. Each term in the sum is the energy that appears in problem (Psk
), for

sk = (lk + lk−1)/2. Now, by Lemma 2.2, if for each k = 1, . . . , n, θk minimizes
(Psk

), then since sk > sk−1, θk ≤ θk−1: hence the minimum problem above is in
fact unconstrained. Moreover, by Proposition 2.7, a solution of (Psk

) is given by
ws, where w solves (4). We �nd that a solution z of (5) is given by zi = l0 if
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wi ≤ (l1 + l0)/2, zi = lk, k = 2, . . . , n− 1, if (lk + lk−1)/2 < wi ≤ (lk+1 + lk)/2, and
zi = ln if wi > (ln + ln−1)/2.

We also have that any solution z of (5) satis�es |zi − wi| = minn
k=0 |lk − wi| for

any i: in particular, one has maxN
i=1 |zi − wi| ≤ δl/2 as soon as l0 ≤ mini wi and

ln ≥ maxi wi (which is certain if l0 is chosen no larger than mini Gi, and ln no less
maxi Gi). In conclusion, the quantized problem (5) produces exactly a quantization
of the solution of (4).

3 Algorithms

The interaction energy appearing in (1), (2) is of the form

J(w) =
∑

1≤i<j≤N

αi,j |wi − wj | .

The weights αi,j are always assumed to be nonnegative. We also introduce αj,i =
αi,j , notice however that all the discussion that follows is still valid for the more gen-
eral form of the energy

∑
i 6=j αi,j(wi−wj)+, with directional and possibly di�erent

interaction weights αi,j and αj,i (we de�ne x+ = max{x, 0}, x− = (−x)+ for any
real number x). We will assume in the rest of the discussion that λ = 1, without loss
of generality. Since for any two real numbers a, b, |a− b| =

∫ +∞
−∞ |χa>s−χb>s| ds, J

clearly satis�es (3). (The same observation appears in a recent paper by B. A. Za-
lesky [28].)

The consequences of the previous discussion are, on one hand, that it is possible
to solve a TV minimisation problem such as (4) by solving either binary MRF
problems of type (Ps) for each level s (or rather for s in a �nite, reasonably large
set of levels {l0, . . . , ln}), or by solving directly a quantized problem of type (5).
All these can be solved by graph-�ow techniques. Conversely, it is possible to �nd
a solution of a binary problem such as (1) (or (Ps)) by solving an appropriate
TV minimization problem, and thresholding the result. We will not discuss this
alternative in the present paper, although it might be interesting for �nding solutions
to the whole family of problems (Ps) in one single pass. Let us �rst describe the
�graph-cut� techniques for solving binary MRFs.

3.1 Algorithms for binary MRFs

It has been observed �rst by Greig, Porteous and Seheult that a problem such as (1)
or (Ps) is equivalent to �nding a partition of an appropriate graph into two sets.
We consider the problem written in the form (P ) (remember (P ) denotes problem
(P0)). Consider the graph G = (V, E) made of vertices

V = {i : i = 1, . . . , N} ∪ {t} ∪ {s}

where the �terminals� s and t are called respectively the source and the sink, and
of (oriented) edges

E = {(i, j) : 1 ≤ i, j ≤ N i 6= j , αi,j > 0}
∪ {(s, i) : 1 ≤ i ≤ N} ∪ {(i, t) : 1 ≤ i ≤ N} .

8



The �rst two sets of edges represent the interactions between values, necessary to
represent the potential J . The last set, that links each value to both terminals, is
used to represent the potential −

∑
i Giθi that appears in Problem (P ). Now, as-

sume each edge e ∈ E has a �capacity� C(e). (For technical reasons, these capacities
need be nonnegative.) Then, given a �cut� (Vs,Vt) of the graph, that is, a partition
of V into two sets, one containing s and the other containing t, one can de�ne the
energy of the cut by

E(Vs,Vt) =
∑

e=(α,β)∈E
α∈Vs,β∈Vt

C(e)

As shown in [17], there is a way to associate capacities to the graph G so that if we
let θi = 1 if i ∈ Vs and θi = 0 otherwise, then

E(Vs,Vt) = J(θ)−
N∑

i=1

Giθi + constant (6)

for any cut (Vs,Vt). Let us describe how these capacities are assigned. To an edge
e = (i, j) ∈ E , we simply let C(e) = αi,j . Then, choosing G ≥ maxi Gi, we let
C(s, i) = G and C(i, t) = G−Gi. It is then straightforward to check (6).

Now, it is possible to �nd, in polynomial time, an optimal cut (that is, a cut
minimizing its total energy E) in such a graph, giving a solution to our binary MRF
model. The idea is to �nd a �maximal �ow� along the edges of the graph, from s
to t. The equivalence between both problems is a duality result, due to Ford and
Fulkerson. We refer to [6] for a very clear description of the method, and of an
algorithm.

3.2 Minimization of (4) using graph cuts

According to the discussion in section 2, one deduces essentially two methods for
minimizing (4) using the max �ow algorithm for computing graph cuts.

3.3 First method (Darbon and Sigelle's algorithm)

The �rst method consists simply in �xing n + 1 levels l0, . . . , ln, with l0 = mini Gi

and lk = maxi Gi, and lk − lk−1 = (ln − l0)/n = δl, and to �nd a solution z of the
quantized problem (5). Practically, one solves problem (Psk

) for sk = (lk + lk−1)/2,
for each k = 1, . . . , n: the result is a �eld θk with θk = 1 when z > sk and 0
else. One easily rebuilds z from the θk's. Now, there is a lot of redundancy in this
method. Indeed, since θk ≤ θk−1, once problem (Psk−1) is solved one should not
need to reprocess the areas where θk−1 = 0 (since there, θk = 0 is already known).

This observation yields a more e�cient method for solving (4), up to an arbitrary,
�xed precision. The algorithm that we propose here has already been presented, in a
slightly di�erent way, in two papers by J. Darbon and M. Sigelle [14, 15]. We denote
by w the (unique) solution of (4). Given a �depth� D ≥ 1, we �x a dyadic number of
(increasing) thresholding levels sk, for k = 1, . . . , n = 2D−1. We introduce an array
(Ki), i = 1, . . . , N , of integers, whose meaning will be, at the end of the process,
the following: if Ki = k, then sk ≤ wi ≤ sk+1 (letting by convention s0 = −∞ and
s2D = +∞). We initialize this array with the value 0. Then, for d = 0, . . . , D − 1,
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we segment at each level sk for k = (2p− 1)2D−1−d, p = 1, . . . , 2d. First, for d = 0,
we segment at level sk for k = 2D−1, by solving problem (Psk

), and we get a map θ
such that if θi = 1, wi ≥ sk, whereas if θi = 0, wi ≤ sk. Hence we let Ki = k when
θi = 1 and we leave the value 0 when θi = 0.

For d = 1, let us consider the levels sk, k = 2D−2, and sk′ , k′ = 3 × 2D−2. If θ
solve (Psk

), we know that each time Ki = 2D−1, then θi = 1, in the same way, if θ′

solve (Psk′ ), each time Ki = 0, then θ′i = 0. Thus, (θi)i:Ki=0 solves the problem

min
θi∈{0,1}

∑
i<j,Ki=Kj=0

αi,j |θi − θj | +
∑

Ki=0 6=Kj

αi,j(1− θi) +
∑

Ki=0

(sk −Gi)θi ,

while (θ′i)i:Ki 6=0 solves

min
θ′i∈{0,1}

∑
i<j,Ki=Kj 6=0

αi,j |θ′i − θ′j | +
∑

Ki 6=0=Kj

αi,jθ
′
i +

∑
Ki 6=0

(sk′ −Gi)θ′i .

These two problems can be solved independently, but they can also be merged in
the following way: we let θ̂i = θi when Ki = 0, and θ̂i = θ′i when Ki = 2D−1, then
θ̂ solves the problem

min
θ̂i∈{0,1}

∑
i<j,Ki=Kj

αi,j |θ̂i − θ̂j | +
∑

Ki=0 6=Kj

(αi,j(1− θ̂i) + αj,iθ̂j)

+
N∑

i=1

(sKi+2D−2 −Gi)θ̂i .

This problem is easily written on a graph G = (V, E ′) where E ′ ⊂ E contains only
the edges (i, j) with Ki = Kj : of course, this is �ctitious in the sense that V \ {s, t}
is now completely disconnected, and (at least) two di�erent independent problems
are solved. After θ̂ is computed, (Ki)N

i=1 is updated as follows: if Ki = 0, then we
let Ki = 0 if θ̂i = 0 and Ki = k = 2D−2 else, and if Ki = 2D−1, we let Ki = 2D−1

if θ̂i = 0 and Ki = k′ = 3 × 2D−2 else. Hence, Ki is updated according to the
following rule:

Ki ← Ki + 2D−2θ̂i .

Now, the subsequent steps (d ≥ 2) are processed exactly in the same way. One
solves the binary problem

min
θ̂i∈{0,1}

∑
i<j,Ki=Kj

αi,j |θ̂i − θ̂j | +
∑

Ki<Kj

(αi,j(1− θ̂i) + αj,iθ̂j)

+
N∑

i=1

(sKi+2D−1−d −Gi)θ̂i .

Again, this is a disjoint union of at least 2d problems, that can be solved on a graph
with the same vertices as before (and less edges). One then updates Ki according
to the rule

Ki ← Ki + 2D−1−dθ̂i .

At the end of the process, one �nds an array (Ki) of values between 0 and 2D − 1,
such that if Ki = k, then: if k = 0, w ≤ s1, if k = n = 2D − 1, w ≥ sn, and in all
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other cases, sk ≤ w ≤ sk+1. This provides, of course, an approximation of w, with
a precision controlled by 2−D. In particular, we get an exact solution z of (5) for
the levels l0 < l1 < · · · < ln, n = 2D − 1, if for each k ≥ 1, sk = (lk + lk−1)/2 and
we let at the end of the process zi = lKi

.

3.4 Second method (Ishikawa's representation)

An alternative approach to solve (5) is to use the representation of Ishikawa (see [18,
19]). The idea is to introduce an additional dimension and represent the �eld z ∈ X,
zi ∈ {l0, . . . , ln} for all i, in the following way: we let Y = Xn and consider all binary
�elds Θ ∈ Y , Θ = (Θk

i )k=1,...,n
i=1,...,N such that Θk

i ≤ Θk−1
i for 2 ≤ k ≤ n, and any i.

Then, there is a one-to-one correspondence between admissible z for problem (5)
and these binary �elds, if to any such z we associate Θ given by Θk

i = 1 if zi ≥ lk,
and 0 otherwise. If we de�ne the energies (assuming, to simplify, that lk− lk−1 = δl
is independent on k)

F1(Θ) = δl

n∑
k=1

∑
1≤i<j≤N

αi,j |Θk
i −Θk

j | +
N∑

i=1

n∑
k=2

∞ · (Θk
i −Θk−1

i )+

+
N∑

i=1

n∑
k=1

(lk −Gi)2 − (lk−1 −Gi)2

2
Θk

i

and

F2(Θ) = δl
n∑

k=1

∑
1≤i<j≤N

αi,j |Θk
i −Θk

j |

+
N∑

i=1

n∑
k=2

(
∞ · (Θk

i −Θk−1
i )+ +

(lk−1 −Gi)
2

2

(Θk
i −Θk−1

i )−
)

+
N∑

i=1

(ln −Gi)
2

2

Θn
i −

(l0 −Gi)
2

2

Θ1
i ,

then one easily checks that for any Θ ∈ Y , F1(Θ) = F2(Θ). Moreover, when
this value is �nite, then Θk

i is nonincreasing with respect to k, so that Θ is in
correspondence with an admissible z ∈ X, zi ∈ {l0, . . . , ln}. In this case, one has

F1(Θ) = F2(Θ) = J(z) +
1
2

N∑
i=1

(zi −Gi)2 − N
(l0 −Gi)

2

2

.

Hence, up to a constant, the energy of Θ is the same as the energy of z. The
consequence is that problem (5) can be solved by �nding the (unique) optimal cut
in the graph associated to the energy F1 or F2. Our experiments seem to show that
the max �ow algorithm of [6] performs better on the graph associated to F1 than
on the one associated to F2.

Let us observe that this construction is quite general: in [18], it is shown that as
soon as J is convex an energy such as F1 or F2 can be found, whose minimization
gives a solution to the initial problem. We will see that in our case this method is
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(by far) less e�cient than the algorithm proposed in Section 3.3. However, it can
be used for energies much more general than (4)-(5). In particular, it is important
to notice that it will solve any (quantized) problem such as

min
z

J(z) +
N∑

i=1

H(i, zi)

where the function H needs not be convex in zi (whereas the method in Section 3.3
is easily adapted to solve this problem as long as zi 7→ H(i, zi) is convex (just
replace s−Gi by ∂zi

H(i, ·)|s in problem (Ps)), but will not work otherwise). This
is of particular interest in stereo correspondence problems, or for the computation
of optical �ows.

Eventually, we would like to point out the fact that the same representation
appeared recently in the continuous setting, for the study of functionals of the form
u 7→

∫
f(x, u,∇u) � possibly with an additional jump term (like the Mumford-Shah

functional). A necessary condition of minimality was derived from this representa-
tion, related to the existence of a vector �eld that maximizes its �ow through the
graph of u, in a certain class. See [1, 9].

4 TV minimization

We now consider the case where our vector space X represents the grey-level values
of a bidimensional image, that is, X = RN×M , and a vector w ∈ X is a matrix
(wi,j)i=1,...,N,j=1,...,M . We consider the simplest, anisotropic discretization of the
TV, given by

J(w) =
∑
i,j

|wi+1,j − wi,j |+ |wi,j+1 − wi,j |

where in the sum all terms that are well-de�ned appear. Extension of what will
be said to more complex interactions (not nearest-neighbours, or nonuniform) is
obvious.

We see that problem (2) is of the form (4). On the other hand, if a, b and gi,j

are scalar quantities in (1), then clearly this problem is a particular 2-levels case
of (5), with G simply given by g and λ by λ/(b − a) (assuming b > a). If those
quantities are vectorial, on the other hand, one can also rewrite (1) as

min
θi,j∈{0,1}

λ
∑
i,j

J(θ) +
∑
i,j

(
b2 − a2

2
− (b− a) · gi,j

)
θi,j + constant ,

which is of the form (Ps).
We will compare the two algorithms described in sections 3.3 and 3.4 to the

algorithm introduced in [11], for minimizing (2). Let us brie�y recall this algorithm.
First of all, we mention that also this algorithm could be described in the more
general abstract setting of the previous section. However, it does not seem to be
much more e�cient than the �rst algorithm in section 3.3. Its strength, on the other
hand, is that it also works with interaction energies of the form

Jiso(w) =
∑
i,j

√
(wi+1,j − wi,j)2 + (wi,j+1 − wi,j)2 ,
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that to our knowledge are not easily handled by the methods described previously.
(In particular, Jiso does not satisfy (3), but it may be seen as a discretization of
the �true� total variation, which satis�es, in the continuous setting, the co-area
formula.) Also, it is easily generalized to the case where wi,j is vectorial (case of
color/multispectral images). For these reasons, we prefer to stick to the description
in [11], in the particular setting of a 2D, nearest-neighbours interaction energy. Let
us brie�y recall how the algorithm is implemented.

The energies J and Jiso can be written

J(w) =
∑
i,j

|(∇xw)i,j |+ |(∇yw)i,j | and Jiso(w) =
∑
i,j

|(∇w)i,j |

where the vector (∇w)i,j = ((∇xw)i,j , (∇yw)i,j) ∈ X ×X is de�ned by

(∇xw)i,j =
{

wi+1,j − wi,j if 1 ≤ i < N, 1 ≤ j ≤M
0 if i = N, 1 ≤ j ≤M,

(∇yw)i,j =
{

wi,j+1 − wi,j if 1 ≤ i ≤ N, 1 ≤ j < M
0 if 1 ≤ i ≤ N, j = M.

When (x, y) ∈ R2, |(x, y)| denotes the Euclidean norm. If both X and X ×X are
endowed with the standard Euclidean scalar product, then a discrete divergence is
given by div = −∇∗, that is

(div ξ, w)X = −(ξ,∇w)X×X ∀w ∈ X, ξ ∈ X ×X.

(It is easily computed, see [11].)
By standard duality arguments, it is shown in [11] that the solution of

min
w∈X

Jiso(w) +
1
2λ
‖w − g‖2 (7)

is given by w = g + λdiv ξ where ξ is a solution to

min{‖g + λdiv ξ‖2 : ξ = (ξx, ξy) ∈ X ×X , |ξi,j | ≤ 1∀i, j} . (8)

Moreover, one has ξi,j · (∇w)i,j = |(∇w)i,j | for all i, j. The same proof will show
that the solution of (2) is given by the same formula, with now ξ a solution to

min{‖g + λdiv ξ‖2 : ξ ∈ X ×X , |ξx
i,j | ≤ 1 and |ξy

i,j | ≤ 1∀i, j} . (9)

and ξi,j · (∇w)i,j = |(∇xw)i,j | + |(∇yw)i,j | for all i, j. We observe that the �eld ξ
which is found here is closely related to the �ow computed by the max-�ow algorithm
of the previous sections.

In [11], the following iterative algorithm is proposed to solve (8). We let ξ0 = 0,
and for all n ≥ 0 we let

wn = g + λdiv ξn

ξn+1
i,j =

ξn
i,j + (τ/λ)(∇wn)i,j

1 + (τ/λ)|(∇wn)i,j |
(10)
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where τ > 0 is a �xed �time-step�. It is shown in [11] that as n → ∞, wn →
w, provided τ ≤ 1/8 (in fact, experimental convergence is observed as long as
τ ≤ 1/4). The following variant, which is a simple gradient descent/reprojection
method, seems to perform better:

wn = g + λdiv ξn

ξn+1
i,j =

ξn
i,j + (τ/λ)(∇wn)i,j

max{1, |ξn
i,j + (τ/λ)(∇wn)i,j |}

(11)

It is easy to show the stability of this scheme up to τ ≤ 1/4 (indeed, ξn 7→ ξn+1 is 1-
Lipschitz); convergence is also probably true but not straigthforward (since ∇div is
singular). Experiments show that it converges as long as τ ≤ 1/4, however, τ = 1/4
is not optimal, and a better convergence is obtained for .24 . τ . .249.

We observe that the error between wn and the solution w of (7) is easily esti-
mated: indeed, since wn = g + λdiv ξn and w = g + λdiv ξ, one has

‖wn − w‖2 = λ(div ξn − div ξ, wn − w)X = −λ(ξn − ξ,∇wn −∇w)X×X .

Since (ξ,∇w)X×X ≤ Jiso(w) for any w ∈ X and ξ ∈ X ×X with |ξi,j | ≤ 1 for all
i, j, and since (ξ,∇w)X×X = Jiso(w), we �nd that

‖wn − w‖2 ≤ λJiso(wn)− (ξn,∇wn)X×X . (12)

The situation is the same with problem (2) and its dual (9): the �xed point
scheme (10) is replaced with

wn = g + λdiv ξn

(ξn+1
i,j )x =

(ξn
i,j)

x + (τ/λ)(∇xwn)i,j

1 + (τ/λ)|(∇xwn)i,j |
,

(ξn+1
i,j )y =

(ξn
i,j)

y + (τ/λ)(∇ywn)i,j

1 + (τ/λ)|(∇ywn)i,j |
,

(13)

while the gradient descent/projection scheme (11) becomes

wn = g + λdiv ξn

(ξn+1
i,j )x =

(ξn
i,j)

x + (τ/λ)(∇xwn)i,j

max{1, |(ξn
i,j)x + (τ/λ)(∇xwn)i,j |}

,

(ξn+1
i,j )y =

(ξn
i,j)

y + (τ/λ)(∇ywn)i,j

max{1, |(ξn
i,j)y + (τ/λ)(∇ywn)i,j |}

.

(14)

The estimate (12) remains true, with now Jiso replaced with J .

5 Comparisons

We have compared four programs based on the two algorithms in Sections 3.3
and 3.4, and the two variants (�xed-point and gradient descent/projection) of the
algorithm in Section 4, for the anisotropic problem (2).
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Figure 1: The original and noisy image used in the experiments

We performed the denoising of an image of 800×600 = 480 000 pixels (corrupted
with a noise of standard deviation 20, for original values in [0, 255], with deviation
∼ 90 � SNR ∼ 20), and of a smaller subimage of size 256× 256 = 65 536 pixels, see
Figure 1. We chose a value of λ = .1 × (π/4) for the large image and .08 × (π/4)
for the smaller (the factor π/4 is introduced since when, roughly speaking, the
�directions� are uniformly distributed in an image w then Jiso(w) = (π/4)J(w):
this allows to compare better the results obtained with J and Jiso). The results are
shown in �gure 2.

All algorithms were programmed in C/C++ and were run on a 3.20 GHz-
Pentium 4 Linux 2.6 system with 1 Mb of cache. The max �ow algorithm program
was the maxflow-v2.2 implementation of [6], implemented by Vladimir Kolmogorov
and that we downloaded from his web page. The type of the capacities was set to

Figure 2: The results
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double, and it is likely that the results can be slightly improved by letting it to
short or int and appropriately quantifying the values. This max-�ow program was
then linked with an appropriate C++ program organizing the dyadic decomposition
of the levels. The execution times of the programs was measured using the times()
C command.

Table 1 compares the algorithms for the small image. The RMSE and Absolute
Di�erence are with respect to the �true� solution, computed using the dyadic graph-
cut algorithm at depth 16 (precision 255/(2−16 − 1)). The RMSE is renormalized
(divided by 255) whereas the absolute di�erence is in pixel values (in [0 − 255]).
For the �xed point algorithm and the projected gradient-descent (�proj. grad.�)

method time (s) iter. RMSE Abs. Di�. [0-255]
graph-cut, depth= 8 .46 1. (theor.)
graph-cut, depth= 12 .87 .0625 (theor.)
graph-cut, depth= 16 1.32 .0039 (theor.)
�xed point, err= .01 .13 32 .0047 5.7
�xed point, err= .005 .35 88 .0022 3.0
proj. grad., err= .01 .17 37 .000717 4.0
proj. grad., err= .005 .38 81 .000371 2.2

Table 1: Comparisons for the small 256× 256 image

algorithm (14), the estimate (12) (renormalized in order to be an RMSE estimate)
was used as a stopping criterion. In the tables, �err=xxx� gives the corresponding
value. We observe that for the projected gradient algorithm, the RMSE that is
actually reached is about 7% of the stopping criterion, while it is almost 50% for the
�xed point algorithm, the total number of iterations remaining of the same order:
it shows that the projected gradient is more e�cient. As a matter of fact, for a
stopping criterion of .01, oscillations remain visible in the output of the �xed-point
method, while they are much attenuated in the output of the projected gradient
method. This algorithm seems to be the most e�cient, however, the control of the
error is more precise with the graph-cut algorithm. Another important observation
is that the projected gradient algorithm is quite straightforward to implement. The

method time (s) iter. RMSE Abs. Di�. [0-255]
graph-cut, depth= 8 4.0 1. (theor.)
graph-cut, depth= 12 8.7 .0625 (theor.)
graph-cut, depth= 16 13.9 .0039 (theor.)
�xed point, err= .01 1.60 50 .0047 6.6
�xed point, err= .005 4.90 154 .0022 3.0
proj. grad., err= .01 2.62 79 .000683 3.3
proj. grad., err= .005 5.50 163 .000387 2.4

Table 2: Comparisons for the large 800× 600 image

comparisons for the larger image, in Table 2, yield the same conclusions. In both
cases, both iterative algorithms had a �time-step� τ = .249. Experiments with

16



τ = .24 show that the projected gradient iterations stop much earlier: after 37
iterations and 1.17 seconds for a stopping value of .01 and 110 iterations and 3.73
seconds for the stopping value of .005. However, in both cases, the RMSE that is
attained is also proportionally higher than with τ = .249: .001162 in the �rst case
and .000535 in the second case. Still, this seems to show that it works better than
the �xed-point iteration.

We also have run Ishikawa's algorithm of Section 3.4. Obviously, it is much
slower than our dyadic graph-cut method (and gives exactly the same answer). Is
also requires a huge amount of memory, so that we did not run it with 256 levels.
With 16, 32, and 64 levels, it ran in respectively 1.61, 3.65 and 8.15 seconds, on
the small image (using the graph representing the energy F1, and 2.93, 7.4 and 19.6
seconds for the graph representing F2) while the dyadic graph-cut method at depths
4, 5 and 6 ran respectively in .16, .21 and .31 seconds. However, we recall again
that Ishikawa's method can be used in much more di�cult (nonconvex) problems.

6 Conclusion

We compared three di�erent techniques for solving the (anisotropic) Rudin-Osher-
Fatemi minimization problem. One, based on the exact resolution of binary MRFs
by integer optimization methods (and which is already found in [14, 15], has the
advantage that it yields an exact solution of the problem, up to a known preci-
sion. However, it seems that the method proposed in [11] or the simple gradient-
descent/projection method given by (14) yield comparable results (the later being
more e�cient). We observe that all of these methods solve, in fact, an appropriate
dual problem.

Providing a sharp a posteriori L2 or, even better, L∞ error estimate for the
scheme (14) would be a considerable improvement.

We also observe that our iterative schemes can easily be made �more� isotropic
by using Jiso instead of J (cf. scheme (11)). On the other hand, improving the
rotational invariance of the algorithm in Section 3.3 requires the use of energies
with more interactions (next-nearest-neighbours, at least), at the cost of e�ciency.
The advantage of iteration (11) over (14) is illustrated in Figure 3.

Figure 3: A noisy image and a detail of the denoised image, �rst with the anisotropic
nearest-neighbours interaction potential J and then with Jiso
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